High Performance

Elektrischer Antrieb

Reduzierte Zykluszeit, höhere Taktrate

Zykluszeit

Reduziert um 33 %

(0,62 s ← 0,93 s) im Vergleich zur bestehenden Serie*1

*1 Wenn LEFS25FH-400 über den gesamten Hub verfahren wird.

Beschleunigung/ Verzögerung

9800 mm/s²

(327 % höher im Vergleich zur bestehenden Serie)

Max. Geschwindigkeit $1500 \, \text{mm/s}$

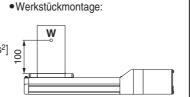
(Um 25 % schneller im Vergleich zur bestehenden Serie)

Elektrischer Spindelantrieb High Performance

Serie *LEFS* F

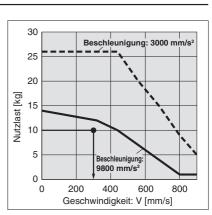
Modellauswahl

Auswahlverfahren



Schrittmotor (24 VDC)

Auswahlbeispiel


Betriebsbedingungen

- Werkstückgewicht: 10 [kg]
- Geschwindigkeit: 300 [mm/s]
- Beschleunigung/Verzögerung: 9800 [mm/s²]
- Hub: 200 [mm]
- Einbaulage: Horizontal

Schritt 1 Überprüfen Sie das Verhältnis Nutzlast-Geschwindigkeit. < Geschwindigkeits-/Nutzlast-Diagramm> (Seiten 2 bis 5) Wählen Sie das Modell entsprechend dem Werkstückgewicht und Geschwindigkeit unter Berücksichtigung des Geschwindigkeits-/Nutzlast-Diagramms.

Auswahlbeispiel) LEFS25FA-200 wird basierend auf dem Diagramm rechts vorläufig ausgewählt.

Geschwindigkeits-Nutzlast-Diagramm (LEFS25FA)

Schritt 2 Überprüfen Sie die Zykluszeit.

Berechnen Sie die Zykluszeit mit der folgenden Berechnungsmethode.

Zykluszeit:

T wird aus folgender Gleichung berechnet.

$$T = T1 + T2 + T3 + T4 [s]$$

• T1: Beschleunigungszeit und

T3: Verzögerungszeit können anhand der folgenden Gleichung ermittelt werden.

•T2: Die Zeit mit konstanter Geschwin-digkeit kann anhand der folgenden Gleichung berechnet werden.

$$T2 = \frac{L - 0.5 \cdot v \cdot (T1 + T3)}{v}[s]$$

• T4: Die Einschwingzeit ist abhängig von Bedingungen wie Antriebstyp, Last und Positionierung.

Referenzwert für die Ausregelzeit: 0,04 bis 0,15 s [Bedingungen: Horizontale Beförderung, In Position 0.5 mm (Anfangswert)]

Der folgende Wert wird für diese aktuelle Berechnung verwendet.

$$T4 = 0.04 [s]$$

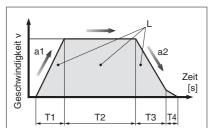
Berechnungsbeispiel)

T1 bis T4 können wie folgt ermittelt werden.

$$T1 = v/a1 = 300/9800 = 0.03 [s],$$

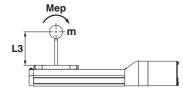
$$T3 = v/a2 = 300/9800 = 0.03 [s]$$

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V}$$

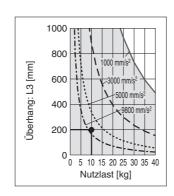

$$= \frac{200 - 0.5 \cdot 300 \cdot (0.03 + 0.03)}{200 \cdot (0.03 + 0.03)}$$

$$T4 = 0.04 [s]$$

Die Zykluszeit kann wie folgt berechnet


$$= 0.03 + 0.64 + 0.03 + 0.04$$

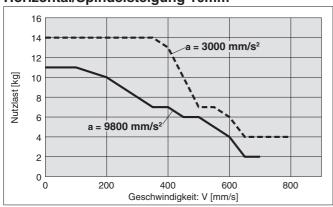
$$= 0,74 [s]$$



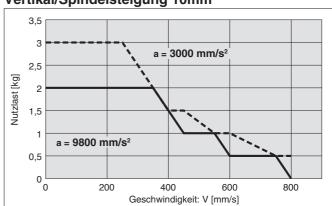
- L: Hub [mm]
 - ··· (Betriebsbedingung)
- v: Geschwindigkeit [mm/s]
 - ··· (Betriebsbedingung)
- a1: Beschleunigung [mm/s2]
 - ··· (Betriebsbedingung)
- a2: Verzögerung [mm/s²] ··· (Betriebsbedingung)
- T1: Beschleunigungszeit [s]
- Zeit bis zum Erreichen der eingestellten Geschwindigkeit
- T2: Zeit der konstanten Geschwindigkeit [s] Zeit, während der der Antrieb mit konstanter Geschwindigkeit betrieben wird
- T3: Verzögerungszeit [s] Zeit bis zum Stillstand
- T4: Einschwingzeit [s] Zeit bis zum Abschluss der Positionierung

Schritt 3 Überprüfen Sie das zulässige Moment.

Basierend auf dem obigen Berechnungsergebnis sollte das Modell LEFS25FA-200 ausgewählt werden.

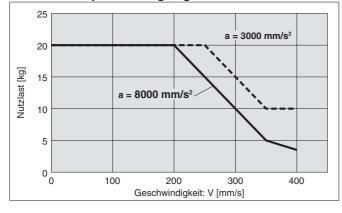


Geschwindigkeits-Nutzlast-Diagramm (Führung)

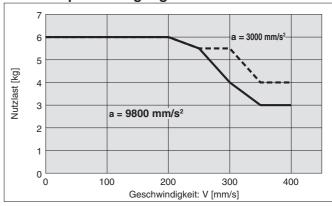

* Die folgenden Diagramme zeigen die Werte bei einer Bewegungskraft (Moving Force) von 100 %.

LEFS16FA/Kugelumlaufspindel

Horizontal/Spindelsteigung 10mm



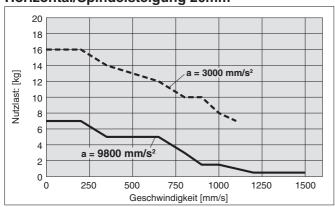
Vertikal/Spindelsteigung 10mm

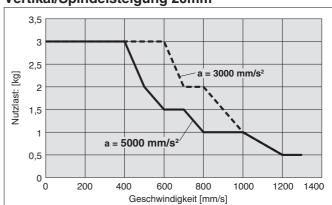


LEFS16FB/Kugelumlaufspindel

Horizontal/Spindelsteigung 5mm

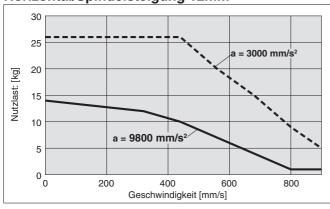
Vertikal/Spindelsteigung 5mm



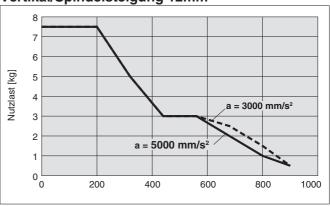

Geschwindigkeits-Nutzlast-Diagramm (Führung) * Die folgenden Diagramme zeigen die Werte bei einer Bewegungskraft (Moving Force) von 100 %.

LEFS25FH/Kugelumlaufspindel

Horizontal/Spindelsteigung 20mm

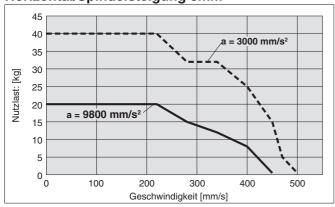


Vertikal/Spindelsteigung 20mm

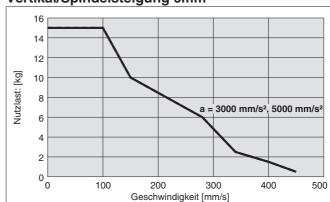


LEFS25FA/Kugelumlaufspindel

Horizontal/Spindelsteigung 12mm

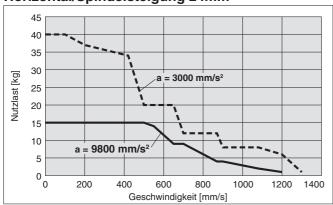


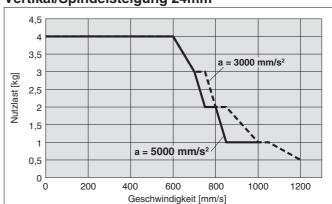
Vertikal/Spindelsteigung 12mm



LEFS25FB/Kugelumlaufspindel

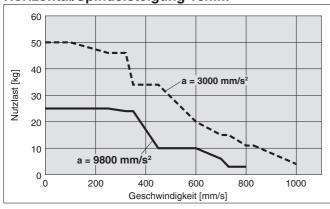
Horizontal/Spindelsteigung 6mm


Vertikal/Spindelsteigung 6mm

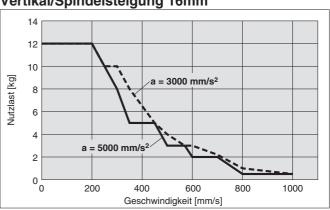

Geschwindigkeits-Nutzlast-Diagramm (Führung) * Die folgenden Diagramme zeigen die Werte bei einer Bewegungskraft (Moving Force) von 100 %.

LEFS32FH/Kugelumlaufspindel

Horizontal/Spindelsteigung 24mm

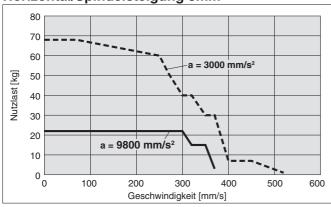


Vertikal/Spindelsteigung 24mm

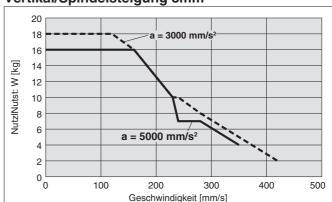


LEFS32FA/Kugelumlaufspindel

Horizontal/Spindelsteigung 16mm



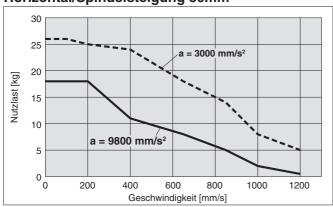
Vertikal/Spindelsteigung 16mm

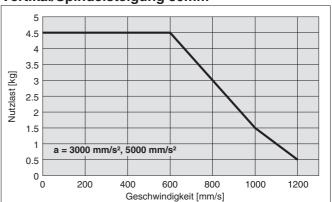


LEFSEFS32FB/Kugelumlaufspinieb

Horizontal/Spindelsteigung 8mm

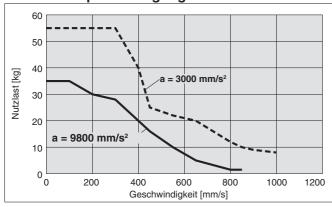
Vertikal/Spindelsteigung 8mm



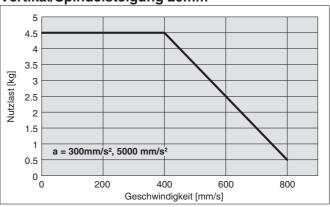

Geschwindigkeits-Nutzlast-Diagramm (Führung) * Die folgenden Diagramme zeigen die Werte bei einer Bewegungskraft (Moving Force) von 100 %.

LEFS40FH/Kugelumlaufspindel

Horizontal/Spindelsteigung 30mm

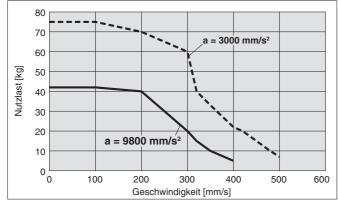


Vertikal/Spindelsteigung 30mm

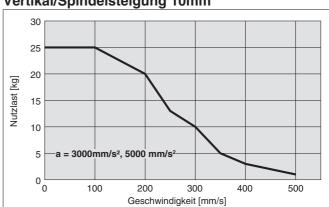


LEFS40FA/Kugelumlaufspindel

Horizontal/Spindelsteigung 20

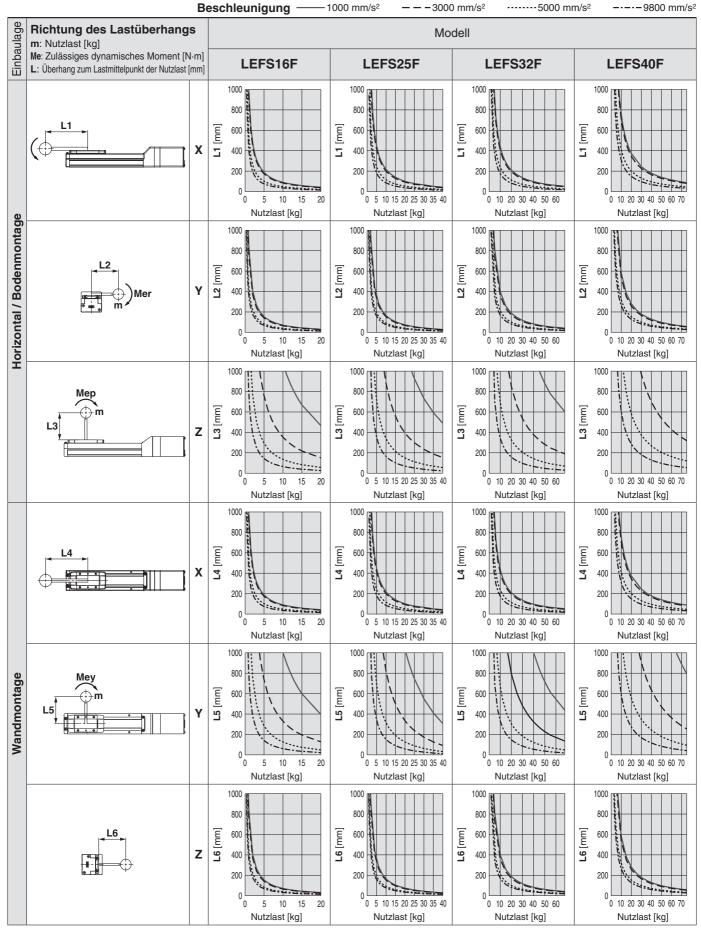


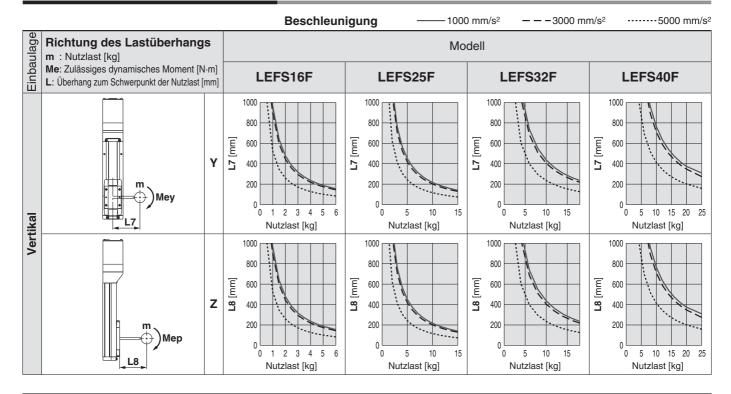
Vertikal/Spindelsteigung 20mm



LEFS40FB/Kugelumlaufspindel

Horizontal/Spindelsteigung 10mm


Vertikal/Spindelsteigung 10mm


Zulässiges dynamisches Moment

Diese Diagramme zeigen den zulässigen Überhang, wenn der Lastschwerpunkt des Werkstücks einen Überhang in eine Richtung aufweist.

Zulässiges dynamisches Moment

Diese Diagramme zeigen den zulässigen Überhang, wenn der Lastschwerpunkt des Werkstücks einen Überhang in eine Richtung aufweist.

Berechnung des Belastungsgrads der Führung

1. Bestimmen Sie die Betriebsbedingungen.

Modell: LEFS□F

Baugröße: 25/32/40

Einbaulage: Horizontal/Boden/Wand/Vertikal

Beschleunigung [mm/s2]: a

Nutzlast [kg]: m

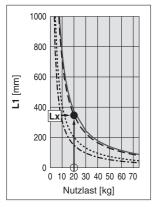
Nutzlast-Mitte [mm]: Xc/Yc/Zc

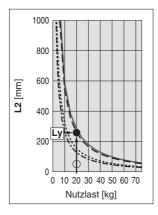
- 2. Wählen Sie das Ziel-Diagramm unter Berücksichtigung des Modells, der Größe und Einbaulage aus.
- 3. Ermitteln Sie anhand der Beschleunigung und der Nutzlast den Überhang [mm]: Lx/Ly/Lz aus dem Diagramm.
- 4. Berechnen Sie den Lastfaktor für jede Richtung.

 $\alpha x = Xc/Lx$, $\alpha y = Yc/Ly$, $\alpha z = Zc/Lz$

5. Bestätigen Sie, dass der Gesamtwert von αx , αy und αz max. 1 beträgt.

$\alpha x + \alpha y + \alpha z \le 1$ Wenn 1 überschritten wird, ziehen Sie bitte die Verringerung der Beschleunigung und Nutzlast in Betracht oder ändern Sie die Nutzlast-Mitte und die Serie. Beispiel 1. Betriebsbedingungen


Modell: LEFS40F Baugröße: 40 Einbaulage: Horizontal


Beschleunigung [mm/s²]: 3000

Nutzlast [kg]: 20

Mittelpunkt der Nutzlast [mm]: Xc = 0, Yc = 50, Zc = 200

2. Wählen Sie die Diagramme für die horizontale Lage des LEFS40F auf Seite 6.

3. Lx = 350 mm, Ly = 250 mm, Lz = 1000 mm 4. Der Lastfaktor für die einzelnen Richtungen wird wie folgt ermittelt.

1. horizontal

2. Decken-

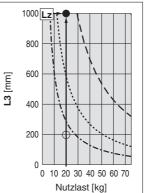
montage

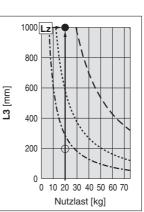
Montage

Einbaurichtung

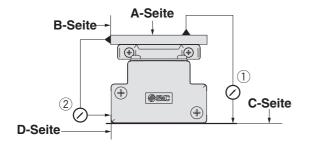
3. Wand-

montage

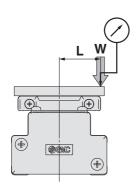

4. vertikale

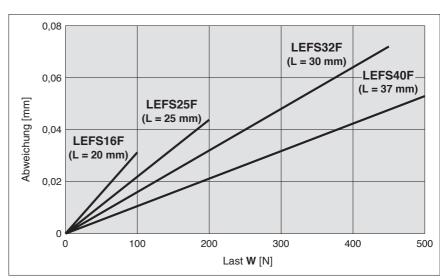

Montage

 $\alpha x = 0/350 = 0$ α **y** = 50/250 = 0,2


 $\alpha z = 200/1000 = 0.2$

5. $\alpha x + \alpha y + \alpha z = 0.4 \le 1$

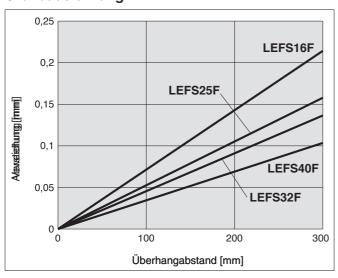

Schlittengenauigkeit (Referenzwert)

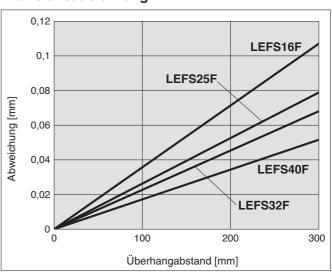


	lineare Verfahrgenauigkeit [mm] (alle 300 mm)			
Modell	① C-Seite zur A-Seite	① D-Seite zur B-Seite		
LEFS16F	0,05	0,03		
LEFS25F	0,05	0,03		
LEFS32F	0,05	0,03		
LEFS40F	0,05	0,03		

Die lineare Verfahrgenauigkeit schließt nicht die Genauigkeit der Montagefläche ein. (gültig bis zu einem Hub von 2000 mm)

Schlittenabweichung (Referenzwert)




- Diese Abweichung wird gemessen, wenn eine Aluminiumplatte von 15 mm auf dem Schlitten montiert und befestigt wird.
- * Überprüfen Sie das Schlittenspiel in Verbindung mit der Schlittenabweichung und der Abweichung bei Überhang separat.

Abweichung bei Überhang durch Spiel des Schlittens (Referenzwert)

Grundausführung

Präzisionsausführung

High Performance

Elektrischer Spindelantrieb

LEFS F Serie LEFS16, 25, 32, 40

(RoHS)

Bestellschlüssel

Weitere Einzelheiten zu den Controllern finden Sie

1 Genauigkeit

_	Grundausführung
Н	Präzisionsausführung

2 Größe

16	
25	
32	
40	

4	Мо	torausführung

Symbo	Auoführung	Verwendbare Größe				Controller
Symbo	Ausführung	LEFS16	LEFS25	LEFS32	LEFS40	Controller
F	High Performance (Schrittmotor 24 VDC)	•	•	•	•	JXC5H JXC6H

Motoreinbaulage

•		coronnadanago
_	_	axial

5 Steigung [mm]

Symbol	LEFS16	LEFS25	LEFS32	LEFS40
Н	_	20	24	30
Α	10	12	16	20
В	5	6	8	10

6 Hub*1[mm]

		A	
Hub	Anm.		
Пир	Größe	Verwendbarer Hub	
50 bis 500	16	50, 100, 150, 200, 250, 300, 350, 400, 450, 500	
50 bis 800	25	50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800	
50 bis 1000	32	50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000	
150 bis 1200	40	150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200	

Signalgebermontage*2 *3 *4 *5

<u> </u>				
_	ohne			
С	vorhanden (inkl. 1 Befestigungselement)			

9 Schutzband-Niederhalter

_	Standard
N	laufrollengeführt (fettfrei)

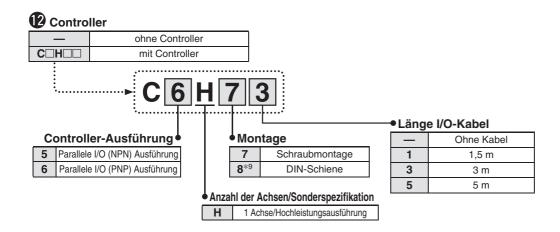
Hub	Anm.			
Пир	Größe	Verwendbarer Hub		
50 bis 500	16	50, 100, 150, 200, 250, 300, 350, 400, 450, 500		
50 bis 800	25	50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800		
50 bis 1000	32	50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000		
150 bis 1200	40	150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200		

_	ohne Option
В	mit Motorbremse
	THE WOOD DICTION

Motoroption

Bohrung für Passstift

_	Unterseite / Gehäuseseite B*6	Unterseite Gehäuse B
К	Gehäuseunterseite 2 Bohrungen	Gehäuseunterseite


1 Antriebskabel-Ausführung/-länge*8

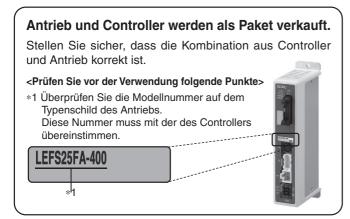
Standardkabel [m]							
_	Ohne						
S1	1,5						
S3	3						
S5 5							

a	DCI-A	usiuiii	ung/	lalige
	Roboti	kkabel		[m]
	R1	1,5	RA	10* ⁷
	R3	3	RB	15* ⁷
	R5	5	RC	20* ⁷
	R8	8* ⁷		

High Performance Elektrischer Spindelantrieb Serie LEFS F

- *1 Setzen Sie für für Hübe, die nicht Standard sind, mit SMC in Verbindung.
- *2 Ausgenommen LEFS16
- *3 Falls 2 oder mehr Befestigungselemente erforderlich sind, diese bitte separat bestellen. (Teilenummer: LEF-D-2-1 Siehe Web-Katalog für Details.)
- *4 Signalgeber separat bestellen. (Siehe Web-Katalog für Details.)
- *5 Bei der Wahl von "—" wird das Produkt ohne eingebauten Magneten für einen Signalgeber geliefert, sodass das Befestigungselement nicht verwendet werden kann. Stellen Sie sicher, dass Sie ein geeignetes Modell auswählen, da das Produkt nach dem Kauf nicht mehr umgerüstet werden kann.
- *6 Für nähere Angaben zur Montage (Methode) siehe Web-Katalog.
- *7 Fertigung auf Bestellung
- *8 Das Standardkabel ist nicht energiekettentauglich und kann nur für stationäre Anwendungen verwendet werden.
- *9 DIN-Schiene ist nicht inbegriffen.

Achtung


[CE-konforme Produkte]

Die EMV-Konformität wurde durch Kombinieren des elektrischen Antriebs der Serie LEF und des Controllers der Serie JXC getestet.

Die EMV ist von der Konfiguration der Schalttafel des Kunden und von der Beeinflussung sonstiger elektrischer Geräte und Verdrahtung abhängig. Aus diesem Grund kann die Erfüllung der EMV-Richtlinie nicht für SMC-Bauteile zertifiziert werden, die unter realen Betriebsbedingungen in Kundensystemen integriert sind. Daher muss der Kunde die Erfüllung der EMV-Richtlinie für das Gesamtsystem bestehend aus allen Maschinen und Anlagen überprüfen.

[UL-konforme Produkte]

Das Produkt mit Controller, dessen Produkt-Nr. C□H□□ enthält, ist UL-konform. Siehe **②** Controller unten.

Siehe Betriebsanleitung für die Verwendung der Produkte.
 Diese können Sie von unserer Webseite: http://www.smc.eu herunterladen.

	Schrittdateneingang
Ausführung	
Serie	JXC5H JXC6H
Merkmale	Parallel-I/O
kompatibler Motor	Schrittmotor 24 VDC
max. Anzahl der Schrittdaten	64 Positionen
Versorgungsspannung	24 VDC
Details auf Seite	24

Technische Daten

		Modell		LEF:	S16F		LEFS25F	:	I	LEFS32F	:	LEFS40F				
	Hub [mm]	*1		50 bi	s 500		50 bis 800		5	0 bis 1000)	1	50 bis 120	0		
	Nutzlast	ho	rizontal	14	20	16	28*	40	40	50	68	26	60*	75		
	[kg]*2	V	ertikal	3	6	3	7,5	15	4	12	18	4,5	4,5	25		
			max. 400	10 bis 800	5 bis 400	20 bis 1500	12 bis 900	6 bis 500	24 bis 1300	16 bis 1000	8 bis 520	30 bis 1200	20 bis 1000	10 bis 500		
			401 bis 500	10 bis 700	5 bis 360	20 bis 1100	12 bis 750	6 bis 400	24 bis 1300	16 bis 950	8 bis 520	30 bis 1200	20 bis 1000	10 bis 500		
			501 bis 600	_	_	20 bis 900	12 bis 540	6 bis 270	24 bis 1200	16 bis 800	8 bis 400	30 bis 1200	20 bis 1000	10 bis 500		
	Gesch-		601 bis 700	_	_	20 bis 630	12 bis 420	6 bis 230	24 bis 930	16 bis 620	8 bis 310	30 bis 1200	20 bis 900	10 bis 440		
sq		Hubbereich	701 bis 800	_	_	20 bis 550	12 bis 330	6 bis 180	24 bis 750	16 bis 500	8 bis 250	30 bis 1140	20 bis 760	10 bis 350		
trie	[mm/s]		801 bis 900	_	_	_	_	_	24 bis 610	16 bis 410	8 bis 200	30 bis 930	20 bis 620	10 bis 280		
An			901 bis 1000	_	_	_	_	_	24 bis 500	16 bis 340	8 bis 170	30 bis 780	20 bis 520	10 bis 250		
des			1001 bis 1100	_	_	_	_	_	_	_	_	30 bis 660	20 bis 440	10 bis 220		
en			1101 bis 1200	_	_	_	_	_	_	_	_	30 bis 570	20 bis 380	10 bis 190		
Technische Daten des Antriebs	max. Besch		Horizontal		9800											
he	Verzögerun	ig [mm/s ²]	Vertikal		5000											
isc	Positionier	wieder-	Grundausführung						±0,02							
녉	holgenauig	gkeit [mm]	Präzisionsausführung					±0.015 (Steigung F	H: ±0,02)						
ě	Umkehrsp	oiel	Grundausführung						max. 0,1							
	[mm]*3		Präzisionsausführung						max. 0,05							
		eigung [m		10	5	20	12	6	24	16	8	30	20	10		
			gkeit [m/s ²]*4	50/20												
	Funktions			Kugelumlaufspindel												
	Führungs							Li	nearführur	ng						
			bereich [°C]						5 bis 40							
			reich [%RH]			T		max. 90 (I	keine Kond							
E .	Motorgröß				28		□42			□56,4			□56,4			
Elektrische pezifikationen	Motoraus	führung							tmotor (24							
risc	Encoder						Inkrement		ase (800 li		ndrehung)					
ekt	Nennspar					ı		24	VDC ±10			1				
E E			Betriebszustand [W]*5		7		16			44			43			
- 3,			ahme [W]*6	10	02		132			158			202			
Technische Daten Motorbremse	Ausführu					I			freie Funk			T				
che	Haltekraft			20 39 47 78 157 72 108 216 75 113						225						
chnis		aufnahme	[W]*°	2	,9		5			5			5			
	Nennspar	0.1	Hübe, die nich						VDC ±10							

- *1 Bitte setzen Sie sich für Hübe, die nicht Standard sind, mit SMC in Verbindung, da diese als Sonderbestellung gefertigt werden.
- *2 Maximale Nutzlast bei einer Beschleunigung bzw. Verzögerung von 3000 mm/s². (Werte gekennzeichnet mit * beziehen sich auf eine maximale Nutzlast bei einer Beschleunigung bzw. Verzögerung von 1000 mm/s²). Geschwindigkeit, Beschleunigung und Verzögerung sind abhängig von der Nutzlast. Beachten Sie das "Geschwindigkeits-/Nutzlast-Diagramm" auf den Seiten 2 bis 5.

 Wenn die Antriebskabellänge mehr als 5 m beträgt, nimmt der Wert pro 5m um bis zu 10% ab.
- *3 Richtwert zur Korrektur eines im Umkehrbetrieb entstandenen Fehlers.
- *4 Stoßfestigkeit: Keine Fehlfunktion im Fallversuch des Antriebes in axialer und senkrechter Richtung zur Gewindespindel. (Der Versuch erfolgte mit dem Antrieb in Startphase.)
 - Vibrationsfestigkeit: Keine Fehlfunktion im versuch von 45 bis 2000 Hz. Der Fallversuch wurde sowohl in axialer als auch in vertikaler Richtung zur Gewindespindel durchgeführt. (Der Versuch erfolgte mit dem Antrieb in Startphase.)
- *5 Die Standby-Leistungsaufnahme im Betriebszustand (inkl. Controller) gilt, wenn der Antrieb in Position gehalten wird.
- *6 Die Leistungsaufnahme (inkl. Controller) gilt, wenn der Antrieb in Betrieb ist. Dieser Wert kann für die Wahl der Spannungsversorgung verwendet werden. Wenn die Netzteilleistung nicht für die momentane Leistungsaufnahme des angeschlossenen Antriebs ausreichend ist, kann die erwartete Leistung (mit der eingestellten Beschleunigung und Geschwindigkeit, abhängig von den Betriebsbedingungen) möglicherweise nicht erreicht werden.
- *7 Nur mit Motorbremse
- *8 Für einen Antrieb mit Motorbremse muss die Leistungsaufnahme für die Motorbremse hinzugerechnet werden.

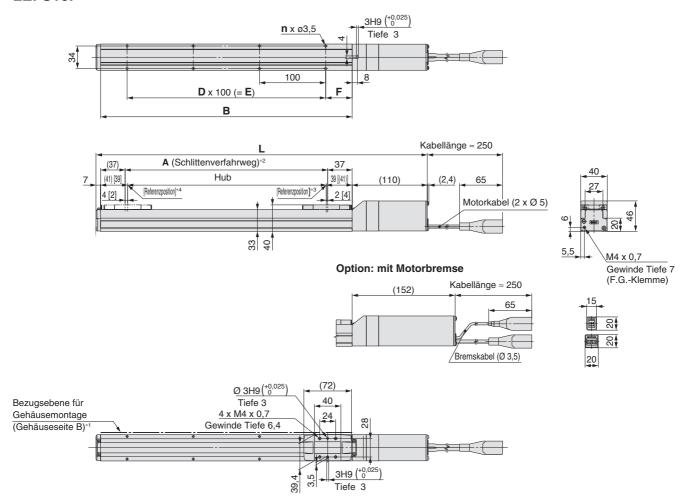
High Performance Elektrischer Spindelantrieb Serie LEFS F

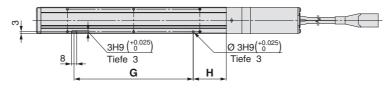
Gewicht

Serie					LEF	S16F				
Hub [mm]	50	100	150	200	250	300	350	400	450	500
Produktgewicht [kg]	0,85	0,92	1,00	1,07	1,15	1,22	1,30	1,37	1,45	1,52
Zusätzliches Gewicht für Motorbremse [kg]					0,	12				

Serie		LEFS25F														
Hub [mm]	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
Produktgewicht [kg]	1,70	1,84	1,98	2,12	2,26	2,40	2,54	2,68	2,82	2,96	3,10	3,24	3,38	3,52	3,66	3,80
Zusätzliches Gewicht für Motorbremse [kg]		0,26														

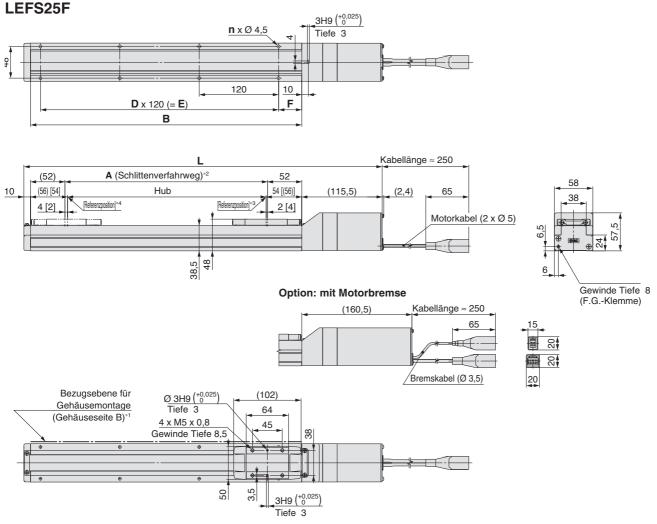
Serie		LEFS32F																		
Hub [mm]	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
Produktgewicht [kg]	3,15	3,35	3,55	3,75	3,95	4,15	4,35	4,55	4,75	4,95	5,15	5,35	5,55	5,75	5,95	6,15	6,35	6,55	6,75	6,95
Zusätzliches Gewicht für Motorbremse [kg]										0,	53									


Serie		LEFS40F																		
Hub [mm]	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1100	1200
Produktgewicht [kg]	5,37	5,65	5,93	6,21	6,49	6,77	7,15	7,33	7,61	7,89	8,17	8,45	8,73	9,01	9,29	9,57	9,85	10,13	10,69	11,25
Zusätzliches Gewicht für Motorbremse [kg]										0,	53									


Serie LEFS F

Abmessungen: axialer Motor

LEFS16F

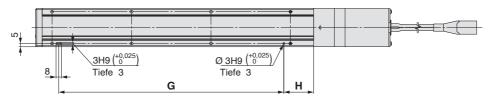

Option Positionierstiftbohrung*5: Gehäuseunterseite

- *1 Wenn Sie den Antrieb unter Verwendung der Bezugsebene für Gehäusemontage montieren, sollte die Höhe der Bezugsebene bzw. der Stifte min. 2mm sein. (Empfohlene Höhe 5 mm) Beachten Sie außerdem, dass andere Oberflächen als die Bezugsebene für Gehäusemontage (Gehäuseseite B) über die Bezugsebene für Gehäusemontage hervorstehen können. Stellen Sie daher sicher, dass ein Abstand von min. 1mm vorhanden ist, um Beeinträchtigungen zwischen den Werkstücken, der Ausrüstung usw. zu verhindern.
- *2 Abstand, innerhalb dessen der Schlitten sich bewegen kann, wenn dieser zurück zur Referenzposition verfährt. Stellen Sie sicher, dass am Schlitten angebrachte Werkstücke nicht die Werkstücke und Anlagenteile im Umfeld des Schlittens behindert.
- *3 Position nach der Rückkehr zur Referenzposition.
- $*4\;$ Der Wert in [] zeigt an, wenn die Referenzierrichtung geändert wurde.
- *5 Bei Verwendung der Positionierstiftbohrung an der Gehäuseunterseite nicht gleichzeitig die Stiftbohrung an der Unterseite des Gehäuses B benutzen.

Abmessungen										[mm]
Modell		L	Α	В	n	D	Е	F	G	н
Modell	ohne Motorbremse	mit Motorbremse	A		"	"	_	Г	G	п
LEFS16F□-50□	247	289	56	130	4	<u> </u>	_	15	80	25
LEFS16F□-100□	297	339	106	180	4	_	_		80	50
LEFS16F□-150□	347	389	156	230	4	—	_		80	50
LEFS16F□-200□	397	439	206	280	6	2	200		180	50
LEFS16F□-250□	447	489	256	330	6	2	200		180	50
LEFS16F□-300□	497	539	306	380	8	3	300	40	280	50
LEFS16F□-350□	547	589	356	430	8	3	300		280	50
LEFS16F□-400□	597	639	406	480	10	4	400		380	50
LEFS16F□-450□	647	689	456	530	10	4	400		380	50
LEFS16F□-500□	697	739	506	580	12	5	500		480	50

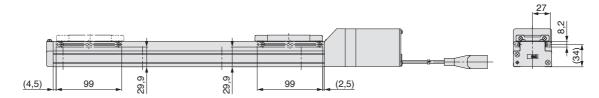
- *1 Wenn Sie den Antrieb unter Verwendung der Bezugsebene für Gehäusemontage montieren, sollte die Höhe der Bezugsebene bzw. der Stifte min. 3 mm sein. (Empfohlene Höhe 5 mm) Beachten Sie außerdem, dass andere Oberflächen als die Bezugsebene für Gehäusemontage (Gehäuseseite B) über die Bezugsebene für Gehäusemontage hervorstehen können. Stellen Sie daher sicher, dass ein Abstand von min. 1 mm vorhanden ist, um Beeinträchtigungen zwischen den Werkstücken, der Ausrüstung usw. zu verhindern.
- *2 Abstand, innerhalb dessen der Schlitten sich bewegen kann, wenn dieser zurück zur Referenzposition verfährt. Stellen Sie sicher, dass am Schlitten angebrachte Werkstücke nicht die Werkstücke und Anlagenteile im Umfeld des Schlittens behindert.
- *3 Position nach der Rückkehr zur Referenzposition.
- *4 Der Wert in [] zeigt an, wenn die Referenzierrichtung geändert wurde.

Abmessungen								[mm]
		L						
Modell	Ohne Motorbremse	mit Motorbremse	Α	В	n	D	E	F
LEFS25F□-50□	285,5	330,5	56	160	4	_	_	20
LEFS25F□-100□	335,5	380,5	106	210	4	_	_	
LEFS25F□-150□	385,5	430,5	156	260	4	_	_	
LEFS25F□-200□	435,5	480,5	206	310	6	2	240	
LEFS25F□-250□	485,5	530,5	256	360	6	2	240	
LEFS25F□-300□	535,5	580,5	306	410	8	3	360	
LEFS25F□-350□	585,5	630,5	356	460	8	3	360	
LEFS25F□-400□	635,5	680,5	406	510	8	3	360	
LEFS25F□-450□	685,5	730,5	456	560	10	4	480	35
LEFS25F□-500□	735,5	780,5	506	610	10	4	480	
LEFS25F□-550□	785,5	830,5	556	660	12	5	600	
LEFS25F□-600□	835,5	880,5	606	710	12	5	600	
LEFS25F□-650□	885,5	930,5	656	760	12	5	600	
LEFS25F□-700□	935,5	980,5	706	810	14	6	720	
LEFS25F□-750□	985,5	1030,5	756	860	14	6	720	
LEFS25F□-800□	1035,5	1080,5	806	910	16	7	840	



Serie **LEFS** \Box **F**

Abmessungen: axialer Motor


LEFS25F

Option Positionierstiftbohrung*1: Gehäuseunterseite

*1 Bei Verwendung der Positionierstiftbohrung für die Gehäuseunterseite nicht gleichzeitig die Stiftbohrung an der Unterseite der Gehäuseseite B verwenden.

Option Signalgeber

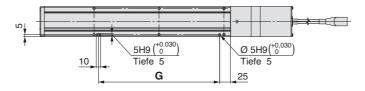
* Bei Hüben von 99 mm oder weniger können nur 2 Signalgeber-Montagewinkel motorseitige installiert werden.

Abmessungen		[mm]
Modell	G	Н
LEFS25F□-50□	100	30
LEFS25F□-100□	100	45
LEFS25F□-150□	100	45
LEFS25F□-200□	220	45
LEFS25F□-250□	220	45
LEFS25F□-300□	340	45
LEFS25F□-350□	340	45
LEFS25F□-400□	340	45
LEFS25F□-450□	460	45
LEFS25F□-500□	460	45
LEFS25F□-550□	580	45
LEFS25F□-600□	580	45
LEFS25F□-650□	580	45
LEFS25F□-700□	700	45
LEFS25F□-750□	700	45
LEFS25F□-800□	820	45

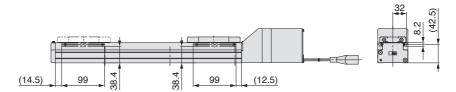
LEFS32F 5H9 (+0,030) Tiefe 5 **n** x Ø 5,5 150 **D** x 150 (= **E**) В 15 Kabellänge ≈ 250 A (Schlittenverfahrweg)* (62) 62 (66) [64] 64 [(66)] (142)(2.4)65 4 [2] [Referenzposition]* 2 [4] Motorkabel (2 x Ø 5) 46,8 9 M4 x 0,7 Gewinde **Option: mit Motorbremse** Tiefe 8 Kabellänge ≈ 250 (F.G.-Klemme) (194)===-Bremskabel (Ø 3,5) Ø 5H9(+0,030) (122)Tiefe 5 70 4 x M6 x 1 Bezugsebene für Gewinde Tiefe 9,9 42 Gehäusemontage (Gehäuseseite B)*1 9

- *1 Wenn Sie den Antrieb unter Verwendung der Bezugsebene für Gehäusemontage montieren, sollte die Höhe der Bezugsebene bzw. der Stifte min. 3 mm sein. (Empfohlene Höhe 5 mm) Beachten Sie außerdem, dass andere Oberflächen als die Bezugsebene für Gehäusemontage (Gehäuseseite B) über die Bezugsebene für Gehäusemontage hervorstehen können. Stellen Sie daher sicher, dass ein Abstand von min. 1mm vorhanden ist, um Beeinträchtigungen zwischen den Werkstücken, der Ausrüstung usw. zu verhindern
- *2 Abstand, innerhalb dessen der Schlitten sich bewegen kann, wenn dieser zurück zur Referenzposition verfährt. Stellen Sie sicher, dass am Schlitten angebrachte Werkstücke nicht die Werkstücke und Anlagenteile im Umfeld des Schlittens behindert.

Tiefe 5

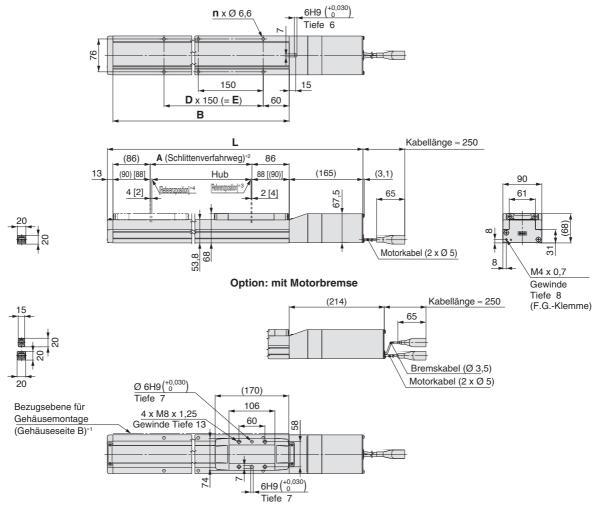

- *3 Position nach der Rückkehr zur Referenzposition.
- $\ast 4~$ Der Wert in [] zeigt an, wenn die Referenzierrichtung geändert wurde.

Abmessungen [mm]							
		L					
Modell	ohne Motorbremse	mit Motorbremse	Α	В	n	D	E
LEFS32F□-50□	332	384	56	180	4	_	_
LEFS32F□-100□	382	434	106	230	4	_	_
LEFS32F□-150□	432	484	156	280	4	_	_
LEFS32F□-200□	482	534	206	330	6	2	300
LEFS32F□-250□	532	584	256	380	6	2	300
LEFS32F□-300□	582	634	306	430	6	2	300
LEFS32F□-350□	632	684	356	480	8	3	450
LEFS32F□-400□	682	734	406	530	8	3	450
LEFS32F□-450□	732	784	456	580	8	3	450
LEFS32F□-500□	782	834	506	630	10	4	600
LEFS32F□-550□	832	884	556	680	10	4	600
LEFS32F□-600□	882	934	606	730	10	4	600
LEFS32F□-650□	932	984	656	780	12	5	750
LEFS32F□-700□	982	1034	706	830	12	5	750
LEFS32F□-750□	1032	1084	756	880	12	5	750
LEFS32F□-800□	1082	1134	806	930	14	6	900
LEFS32F□-850□	1132	1184	856	980	14	6	900
LEFS32F□-900□	1182	1234	906	1030	14	6	900
LEFS32F□-950□	1232	1284	956	1080	16	7	1050
LEFS32F□-1000□	1282	1334	1006	1130	16	7	1050


LEFS32F

Option Positionierstiftbohrung*1: Gehäuseunterseite

*1 Bei Verwendung der Positionierstiftbohrung für die Gehäuseunterseite nicht gleichzeitig die Stiftbohrung an der Unterseite der Gehäuseseite B benutzen.

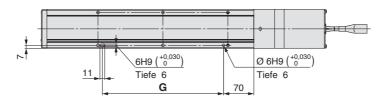

Option Signalgeber

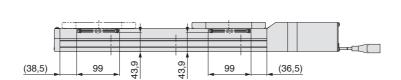
* Bei Hüben kleiner 99 mm können nur 2 Signalgeber-Montagewinkel motorseitig installiert werden.

Abmessungen	[mm]
Modell	G
LEFS32F□-50□	130
LEFS32F□-100□	130
LEFS32F□-150□	130
LEFS32F□-200□	280
LEFS32F□-250□	280
LEFS32F□-300□	280
LEFS32F□-350□	430
LEFS32F□-400□	430
LEFS32F□-450□	430
LEFS32F□-500□	580
LEFS32F□-550□	580
LEFS32F□-600□	580
LEFS32F□-650□	730
LEFS32F□-700□	730
LEFS32F□-750□	730
LEFS32F□-800□	880
LEFS32F□-850□	880
LEFS32F□-900□	880
LEFS32F□-950□	1030
LEFS32F□-1000□	1030

LEFS40F

- *1 Wenn Sie den Antrieb unter Verwendung der Bezugsebene für Gehäusemontage montieren, sollte die Höhe der Bezugsebene bzw. der Stifte min. 3 mm sein. (Empfohlene Höhe 5 mm) Beachten Sie außerdem, dass andere Oberflächen als die Bezugsebene für Gehäusemontage (Gehäuseseite B) über die Bezugsebene für Gehäusemontage hervorstehen können. Stellen Sie daher sicher, dass ein Abstand von min. 1mm vorhanden ist, um Beeinträchtigungen zwischen den Werkstücken, der Ausrüstung usw. zu verhindern.
- *2 Abstand, innerhalb dessen der Schlitten sich bewegen kann, wenn dieser zurück zur Referenzposition verfährt. Stellen Sie sicher, dass am Schlitten angebrachte Werkstücke nicht die Werkstücke und Anlagenteile im Umfeld des Schlittens behindert.
- *3 Position nach der Rückkehr zur Referenzposition.
- *4 Der Wert in [] zeigt an, wenn die Referenzierrichtung geändert wurde.

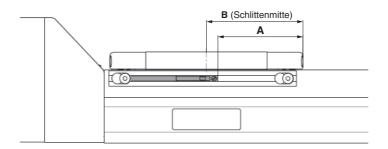

Abmessungen							[mm]
Modell	ohne Motorbremse	mit Motorbremse	Α	В	n	D	E
LEFS40F□-150□	506	555	156	328	4	_	150
LEFS40F□-200□	556	605	206	378	6	2	300
LEFS40F□-250□	606	655	256	428	6	2	300
LEFS40F□-300□	656	705	306	478	6	2	300
LEFS40F□-350□	706	755	356	528	8	3	450
LEFS40F□-400□	756	805	406	578	8	3	450
LEFS40F□-450□	806	855	456	628	8	3	450
LEFS40F□-500□	856	905	506	678	10	4	600
LEFS40F□-550□	906	955	556	728	10	4	600
LEFS40F□-600□	956	1005	606	778	10	4	600
LEFS40F□-650□	1006	1055	656	828	12	5	750
LEFS40F□-700□	1056	1105	706	878	12	5	750
LEFS40F□-750□	1106	1155	756	928	12	5	750
LEFS40F□-800□	1156	1205	806	978	14	6	900
LEFS40F□-850□	1206	1255	856	1028	14	6	900
LEFS40F□-900□	1256	1305	906	1078	14	6	900
LEFS40F□-950□	1306	1355	956	1128	16	7	1050
LEFS40F□-1000□	1356	1405	1006	1178	16	7	1050
LEFS40F□-1100□	1456	1505	1106	1278	18	8	1200
LEFS40F□-1200□	1556	1605	1206	1378	18	8	1200


Serie **LEFS** \Box **F**

Abmessungen: axialer Motor

LEFS40F

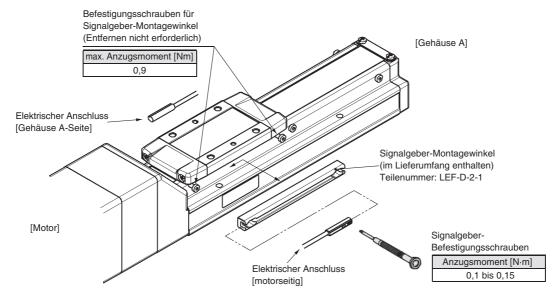
*1 Bei Verwendung der Positionierstiftbohrung für die Gehäuseunterseite nicht gleichzeitig die Stiftbohrung an der Unterseite der Gehäuseseite B verwenden.



Abmessungen	[mm]
Modell	G
LEFS40F□-150□	130
LEFS40F□-200□	280
LEFS40F□-250□	280
LEFS40F□-300□	280
LEFS40F□-350□	430
LEFS40F□-400□	430
LEFS40F□-450□	430
LEFS40F□-500□	580
LEFS40F□-550□	580
LEFS40F□-600□	580
LEFS40F□-650□	730
LEFS40F□-700□	730
LEFS40F□-750□	730
LEFS40F□-800□	880
LEFS40F□-850□	880
LEFS40F□-900□	880
LEFS40F□-950□	1030
LEFS40F□-1000□	1030
LEFS40F□-1100□	1180
LEFS40F□-1200□	1180

Serie LEFS | F | Signalgebermontage

Signalgeber-Einbauposition


				[mm]
Modell	Größe	Α	В	Betriebsbereich
	25	45	51	4,9
LEFS	32	55	61	3,9
	40	79	85	5,3

- * Der verwendbare Signalgeber ist D-M9 (N/P/B) (W) (M/L/Z).
- Der Betriebsbereich ist ein Richtwert einschließlich Hysterese, für den keine Gewährleistung übernommen wird. Je nach Einsatzbedingungen können Abweichungen auftreten.
- Vor der endgültigen Einstellung des Signalgebers zunächst die Betriebsbedingungen prüfen.

Signalgebermontage

Lösen Sie die Schrauben für den Signalgeber-Montagewinkel (es ist nicht erforderlich, diese zu entfernen), der Winkel kann nun ausgehängt werden. Setzen Sie einen Signalgeber in die Nut am Montagewinkel ein.

Da die Befestigungsschrauben des elektrischen Antriebes durch den Signalgeber beeinflußt werden können, montieren Sie zuerst den elektrischen Antrieb, anschließend den Montagewinkel.

- * Der verwendbare Signalgeber ist D-M9 (N/P/B) (W) (M/L/Z).
- * Die Richtung des Anschlusskabels des Signalgebers ist vorgegeben. Bei Montage in der entgegengesetzten Richtung funktioniert der Signalgeber womöglich nicht korrekt.
- Verwenden Sie zum Festziehen der Befestigungsschraube (im Lieferumfang des Signalgebers enthalten) einen Feinschraubendreher mit einem Griffdurchmesser von ca. 5 bis 6 mm.
- Wenn mehr als zwei Signalgeber-Montagewinkel erforderlich sind, diese bitte separat bestellen. Die Befestigungsschrauben für die Befestigung des Signalgeber-Montagewinkels am Hubende sind im Gehäuse bereits angeschraubt.
 Für die Ausführung mit einem Hub von 50 mm werden nur vier Schrauben motorseitig befestigt.

Elektronischer Signalgeber Direktmontage

D-M9N/D-M9P/D-M9B

eingegossenes Kabel

- 2-Draht-Ausführung mit reduziertem max. Arbeitsstrom (2,5 bis 40 mA).
- Standardmäßig werden flexible Kabel verwendet.

_Achtung

Sicherheitshinweise

Befestigen Sie den Signalgeber mit der am Gehäuse angebrachten Schraube. Wird eine andere als die mitgelieferte Schraube benutzt, kann der Signalgeber beschädigt werden.

Technische Daten Signalgeber

Weitere Details zu Produkten, die internationalen Standards entsprechen, finden Sie auf der Website von SMC.

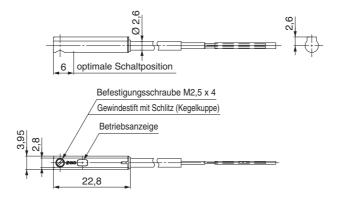
SPS: Speicherprogrammierbare Steuerung

D-M9□, D-M9□V (mit Betriebsanzeige)						
Signalgeber	D-M9N	D-M9P	D-M9B			
Abgang elektrischer Anschluss		3-Draht				
Art der Verdrahtung	3-Draht-	-System	2-Draht			
Ausgangstyp	NPN	PNP	_			
Anwendung	IC-Steuerung	IC-Steuerung, Relais, SPS				
Versorgungsspannung	5, 12, 24 VDC	_				
Stromaufnahme	10 mA ode	er weniger	_			
Lastspannung	28 VDC oder weniger		24 VDC (10 bis 28 VDC)			
Laststrom	Max. 4	10 mA	2,5 bis 40 mA			
Interner Spannungsabfall	0,8 V oder weniger bei 10	4 V oder weniger				
Kriechstrom	100 μA max. bei 24 VDC 0,8 mA oder weni					
Betriebsanzeige	EIN: rote LED leuchtet.					
Standard	(CE-Kennzeichnung, RoHS	3			

Technische Daten des flexiblen ölbeständigen Anschlusskabels

Signalgeber		D-M9N	D-M9P	D-M9B
Mantel	Außen-Ø [mm]	2,6		
Isolator	Anzahl Trägerkörper	3-Draht (braun/blau/schwarz) 2-Draht (braun/bl		2-Draht (braun/blau)
Außen-Ø [mm]		0,88		
Leiter	Effektiver Querschnitt [mm²]		0,15	
Litzen-Durchmesser [mm]			0,05	
Kleinster E	Biegeradius [mm] (Richtwerte)		17	

^{*} Weitere Einzelheiten zu den gemeinsamen Spezifikationen des elektronischen Signalgebers finden Sie im **WEB-Katalog**.


Gewicht

[g]

Signa	Signalgeber D-M9N		D-M9N D-M9P		D-M9N D-M9P	
	0,5 m ()	8		8		7
Anschluss-	1 m (M)	14		13		
kabellänge	3 m (L)	41		38		
	5 m (Z)	6	8	63		

Abmessungen [mm]

D-M9□

Weitere Einzelheiten zur Anschlusskabellänge finden Sie im WEB-Katalog.

Elektronischer Signalgeber (Öffner) Direktmontage

D-M9NE(V)/D-M9PE(V)/D-M9BE(V)

eingegossenes Kabel

- Das Ausgangssignal ist eingeschaltet, wenn der Signalgeber nicht betätigt ist.
- Einsetzbar in allen Serie, in denen auch der D-M9 verwendbar ist.

.Achtung

Sicherheitshinweise

Befestigen Sie den Signalgeber mit der am Gehäuse angebrachten Schraube. Wird eine andere als die mitgelieferte Schraube benutzt, kann der Signalgeber beschädigt werden.

Technische Daten Signalgeber

internationalen Standards entsprechen, finden Sie auf der Website von SMC.

SPS: Speicherprogrammierbare Steuerung

D-M9□E, D-M9□EV (mit Betriebsanzeige)							
Signalgeber	D-M9NE	D-M9NEV	D-M9PE	D-M9PEV	D-M9BE	D-M9BEV	
Abgang elektrischer Anschluss	axial	vertikal	axial	vertikal	axial	vertikal	
Art der Verdrahtung		3-Draht	System		2-D	raht	
Ausgangstyp	NF	PN	PI	NΡ	-	_	
Ausgangsart	IC-Steuerung, Relais, SPS				24 VDC, F	Relais, SPS	
Anwendung	5	5, 12, 24 VDC (4,5 bis 28 V)				_	
Stromaufnahme		10 mA ode	er weniger		_		
Lastspannung	28 VDC oder weniger —			24 VDC (10	bis 28 VDC)		
Laststrom		Max.	10 mA		2,5 bis	40 mA	
Interner Spannungsabfall	0,8 V oder weniger bei 10 mA (max. 2 V bei 40 mA)			4 V odei	weniger		
Kriechstrom	100 μA max. bei 24 VDC			0,8 mA od	er weniger		
Betriebsanzeige	EIN: rote LED leuchtet.						
Standard		(CE-Kennzeic	hnung, RoHS	3		

Technische Daten des flexiblen ölbeständigen Anschlusskabels

Signa	algeber	D-M9NE(V) D-M9PE(V) D		D-M9BE(V)		
Mantel	Außen-Ø [mm]	2,6		2,6		
Isolator	Anzahl Trägerkörper	3-Draht (braun/blau/schwarz)		3-Draht (braun/blau/schwarz) 2-Draht (b		2-Draht (braun/blau)
15018101	Außen-Ø [mm]	0,88				
Leiter	Effektiver Querschnitt [mm²]	0,15				
Leiter	Litzen-Durchmesser [mm]	0,05				
Kleinster Biegerad	ius [mm] (Richtwerte)		17			

- Weitere Einzelheiten zu den gemeinsamen Spezifikationen des elektronischen Signalgebers finden Sie im WEB-Katalog.
- Weitere Einzelheiten zur Anschlusskabellänge finden Sie im WEB-Katalog.

Gewicht [g]

Signa	lgeber	D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
	0,5 m ()	8	3	7
Anschluss-	Anschluss- 1 m (M)*1 14		4	13
kabellänge	3 m (L)	4	1	38
	5 m (Z)*1	6	8	63

^{*1} Die Optionen 1 m und 5 m werden bei Eingang der Bestellung produziert.

Abmessungen [mm] D-M9□E D-M9□EV 2,6 Ø 500(1000)(3000)(5000 optimale Schaltposition optimale Schaltposition Befestigungsschraube M2,5 x 4 Betriebsanzeige Gewindestift mit Schlitz Befestigungsschraube M2,5 x 4 0,3 Gewindestift mit Schlitz Ø 2.6 Betriebsanzeige 19,5

Elektronischer Signalgeber mit 2-farbiger Anzeige Direktmontage

D-M9NW/D-M9PW/D-M9BW

eingegossenes Kabel

- 2-Draht-Ausführung mit reduziertem max. Strom (2,5 bis 40 mA).
- Standardmäßig werden flexible Kabel verwendet.
- Die optimale Schaltposition kann anhand der Farbe der leuchtenden LED bestimmt werden.
 (Rot → Grün ← Rot)

△ Achtung

Sicherheitshinweise

Befestigen Sie den Signalgeber mit der am Gehäuse angebrachten Schraube. Wird eine andere als die mitgelieferte Schraube benutzt, kann der Signalgeber beschädigt werden.

Technische Daten Signalgeber

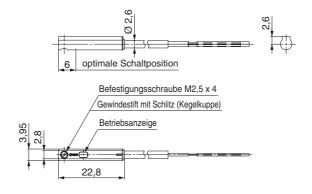
Weitere Details zu Produkten, die internationalen Standards entsprechen, finden Sie auf der Website von SMC.

SPS: Speicherprogrammierbare Steuerung

Anwendung D-M9□W, D-M9□WV (mit Betriebsanzeige)						
Signalgeber	D-M9NW	D-M9PW	D-M9BW			
Abgang elektrischer Anschluss		axial				
Art der Verdrahtung	3-Draht-	-System	2-Draht			
Ausgangstyp	NPN	PNP	_			
zulässige Last	IC-Steuerung	, Relais, SPS	24 VDC, Relais, SPS			
Versorgungsspannung	5, 12, 24 VDC	_				
Stromaufnahme	10 mA oder weniger		_			
Lastspannung	28 VDC oder weniger		24 VDC (10 bis 28 VDC)			
Laststrom	Max.	40 mA	2,5 bis 40 mA			
Interner Spannungsabfall	0,8 V oder weniger bei 10) mA (max. 2 V bei 40 mA)	4 V oder weniger			
Kriechstrom	100 μA oder wer	0,8 mA oder weniger				
Betriebsanzeige	Betriebsbereich ········· Rote LED leuchtet. Geeigneter Betriebsbereich ········ Grüne LED leuchtet.					
Standard		Ausgangsart				

Technische Daten des flexiblen, ölbeständigen Anschlusskabels

Signa	lgeber	D-M9NW	D-M9NW D-M9PW					
Mantel	Außen-Ø [mm]	2,6						
Isolator	Anzahl Trägerkörper	3-Draht (braun	3-Draht (braun/blau/schwarz)					
isolatoi	Außen-Ø [mm]	0,88						
Leiter	Effektiver Querschnitt [mm²]	0,15						
Leiter	Litzen-Durchmesser [mm]							
Kleinster Biegeradi	us [mm] (Richtwerte)	17						


- * Weitere Einzelheiten zu den gemeinsamen Spezifikationen des elektronischen Signalgebers finden Sie im **WEB-Katalog**.
- * Weitere Einzelheiten zur Anschlusskabellänge finden Sie im WEB-Katalog.

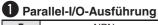
Gewicht [9]

Signal	lgeber	D-M9NW	D-M9NW D-M9PW			
	0,5 m ()		8	7		
Anschluss-	1 m (M)	-	13			
kabellänge	3 m (L)	4	1 1	38		
	5 m (Z)	6	68	63		

Abmessungen [mm]

D-M9□W

Schrittmotor-Controller Hochleistungsausführung



Bestellschlüssel

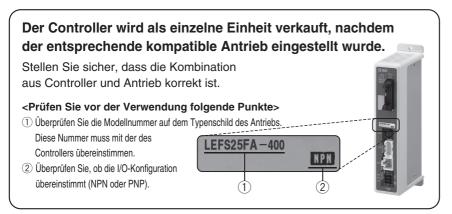
<u> </u>	anor i/ o / taoram ang
5	NPN
6	PNP

2	Spezifikation
---	---------------

oomolotangoaaoramang	H Hoch	leistungsausführung
----------------------	--------	---------------------

3 Montage

7	Schraubmontage			
8	DIN-Schiene			


4 I/O-Kabellänge

_	ohne
1	1,5 m
3	3 m
5	5 m

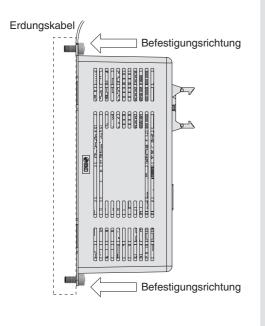
5 Bestellnummer Antrieb

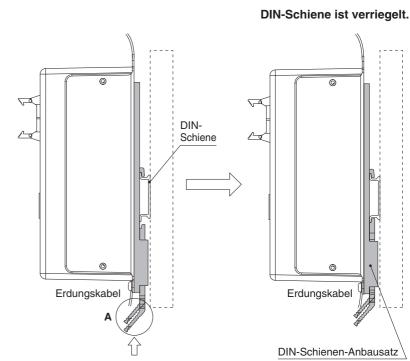
Ohne Kabelspezifikationen und Antriebsoptionen Beispiel: Geben Sie "LEFS25FA-100" für das Modell LEFS25FA-100B-R1□ ein. Unbeschriebener Controller*1

^{*1} Erfordert spezielle Software (JXC-BCW)

Siehe Betriebsanleitung für die Verwendung der Produkte. Diese können Sie von unserer Webseite: http://www.smc.eu herunterladen.

Technische Daten

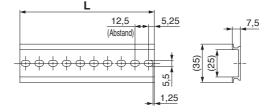

Modell	JXC5H JXC6H
kompatibler Motor	Schrittmotor (24 VDC)
Spannungsversorgung	24 VDC ±10 %
Stromaufnahme (Controller)	max. 100 mA
Encoder	Inkremental, A/B-Phase (800 Impulse/Umdrehung)
Paralleleingang	11 (Optokoppler)
Parallelausgang	13 (Optokoppler)
Serielle Kommunikation	RS485 (nur für LEC-T1 und JXC-W2)
Datenspeicherung	EEPROM
Statusanzeige	PWR, ALM
Länge Antriebskabel [m]	Antriebskabel: max. 20
Kühlsystem	natürliche Luftkühlung
Betriebstemperaturbereich [°C]	0 bis 40
Luftfeuchtigkeitsbereich [%RH]	max. 90 (keine Kondensation)
Isolationswiderstand [MΩ]	Zwischen allen externen Klemmen und Gehäuse: 50 (500 VDC)
Gewicht [g]	180 (Schraubmontage), 200 (DIN-Schienenmontage)


Serie JXC5H/6H

Montageanweisung

a) Schraubmontage (JXC□H7□) (Installation mit zwei M4-Schrauben)

b) DIN-Schienenmontage (JXC□H8□) (Installation mit DIN-Schiene)



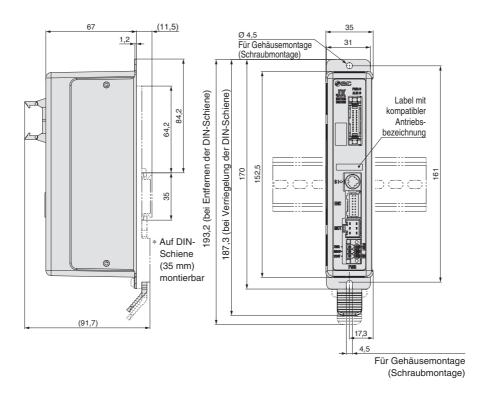
Der Controller wird in die DIN-Schiene eingehängt und der Hebel A wird in Pfeilrichtung geschoben.

* Wird bei der Serie LE die Baugröße 25 oder größer verwendet, muss der Abstand zwischen den Controllern mindestens 10 mm betragen.

DIN-Schiene AXT100-DR-□

* Für □, geben Sie eine Nummer aus der Nr.-Zeilen der untenstehnden Tabelle ein. Siehe Maßzeichnungen auf Seite 26 für Montageabmessungen.

L-Maß [mm]


Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
L	23	35,5	48	60,5	73	85,5	98	110,5	123	135,5	148	160,5	173	185,5	198	210,5	223	235,5	248	260,5
Nr.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
L	273	285,5	298	310,5	323	335,5	348	360,5	373	385,5	398	410,5	423	435,5	448	460,5	473	485,5	498	510,5

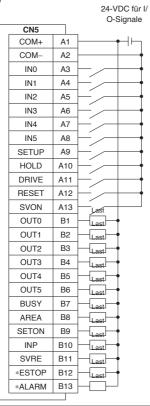
DIN-Schienen-Anbausatz

LEC-D0 (mit 2 Befestigungsschrauben)

Sollte verwendet werden, wenn ein DIN-Schienen-Anbausatz nachträglich auf den Controller der Schraubmontage-Ausführung montiert wird.

Abmessungen

Serie JXC5H/6H


Verdrahtungsbeispiel 1

Paralleler I/O-Anschluss

- * Wenn Sie eine SPS an den parallelle I/O-Anschluss anschließen, verwenden Sie das I/O-Kabel (LEC-CN5-□).

 * Die Verdrahtung muß an die ieweilige Ausführung der Parallel I/O-Anschluss (AIS).
- Die Verdrahtung muß an die jeweilige Ausführung der Parallel-I/O Ausführung (NPN oder PNP) angepasst werden.

Elektrisches Schaltschema JXC5H□□ (NPN)

_	_											
ᆮ	i	n	~	9	n		0	ci		n	al	
_			u	а		ч	-	Э.	u		aı	

ggg.					
Bezeichnung	Details				
COM+	Anschluss der 24 V-Spannungsversorgung für das				
COIVIT	Eingangs-/Ausgangssignal				
COM-	Anschluss Masse für das Eingangs-/Ausgangssignal				
	Schrittdaten entsprechend Bit-Nummer				
IN0 bis IN5	(Der Eingabebefehl erfolgt in der				
	Kombination von IN0 bis 5)				
SETUP	Befehl für die Rückkehr zur Ausgangsposition				
HOLD	Der Betrieb wird vorrübergend angehalten				
DRIVE	Befehl zum Verfahren				
RESET	Zurücksetzen des Alarms und Unterbrechung des				
NESET	Betriebes				
SVON	Befehl Servo ON				

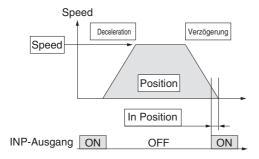
JXC6H□□ (PNP)

		24-VDC für I/
CN5		O-Signale
COM+	A1	
COM-	A2	
IN0	АЗ	
IN1	A4	
IN2	A5	
IN3	A6	
IN4	A7	
IN5	A8	
SETUP	A9	
HOLD	A10	
DRIVE	A11	
RESET	A12	
SVON	A13	
OUT0	B1	Last
OUT1	B2	Last
OUT2	В3	Last
OUT3	B4	Last
OUT4	B5	Last
OUT5	B6	Last
BUSY	B7	Last
AREA	B8	Last
SETON	В9	Last
INP	B10	Last
SVRE	B11	Last
*ESTOP	B12	Last
*ALARM	B13	Last
		•

Ausgangssignal

Bezeichnung	Details	
OUT0 bis OUT5	Ausgabe der Schrittdaten-Nr. während des Betriebs	
BUSY	Ausgabe, wenn der Antrieb in Bewegung ist	
ARFA	Ausgabe innerhalb des Ausgabeeinstellbereichs	
7111271	der Schrittdaten	
SETON	Ausgabe bei Rückkehr in die Ausgangsposition	
INP	Ausgabe bei Erreichen der Zielposition oder Zielkraft (Schaltet sich ein, wenn Positionierungoder Vorschub abgeschlossen sind.)	
SVRE	Ausgabe, wenn Motor eingeschaltet ist	
*ESTOP*1	keine Ausgabebei EMG-Stopp-Befehl	
*ALARM*1	keine Ausgabe bei Alarm	

^{*1} Signal des negativ-logischen Schaltkreises (N.C.)


Schrittdaten-Einstellung

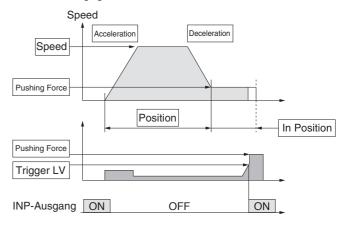
1. Schrittdaten-Einstellung für Positionierung

Mit dieser Einstellung bewegt sich der Antrieb in Richtung der Zielposition und stoppt dort.

Das folgende Diagramm zeigt die Einstellparameter und den Betrieb.

Die Einstellparameter und Einstellwerte für diesen Betrieb sind unten angegeben.

- ⊚: müssen eingestellt werden
- O: müssen den Anforderungen


eingestellt werden -: Einstellung ist nicht erforderlich

Schrittdaten (Positionierung)

Notwen- digkeit	Element	Details	
0	Movement MOD	Ist eine absolute Position erforderlich, stellen Sie "Absolut" ein. Ist eine relative Position erforderlich, stellen Sie "Relative" ein.	
0	Speed	Verfahrgeschwindigkeit zur Zielposition	
0	Position	Zielposition	
0	Acceleration	Beschleunigungsparameter, je höher der Einstellwert, desto schneller erreicht der Antrieb die eingestellte Geschwindigkeit.	
0	Deceleration	verzögerungsparameter, je höher der Sollwert, desto schneller stoppt der Antrieb.	
0	Pushing Force	Einstellwert 0. (Werden Werte von 1 bis 100 eingestellt, wechselt der Betrieb zu Schub-Betrieb	
_	Trigger LV	Einstellung nicht erforderlich.	
_	Pushing Speed	Einstellung nicht erforderlich.	
0	Stellkraft	Max. Drehmoment während des Positionierbetriebs (keine besondere Änderung erforderlich.)	
0	Area 1, Area 2	Bedingung, die das AREA-Ausgangssignal (Bereich) einschaltet.	
0	In Position	Bedingung, die das INP-Ausgangssignal einschaltet. Sobald der Antrieb den [In Position]-Bereich, schaltet sich das INP-Ausgangssignal ein. (Das Ändern des Anfangswertes ist hier nicht notwendig.) Wenn die Ausgabe des Ankunftssignals vor Abschluß des Betriebes erforderlich ist, erhöhen Sie den Wert.	

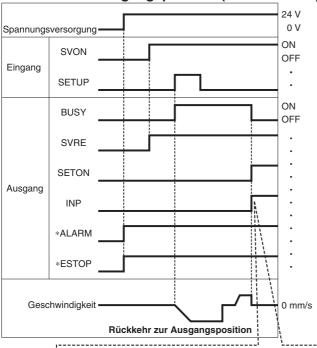
2. Schrittdaten-Einstellung für Schub

Der Antrieb bewegt sich in Richtung der Schub-Startposition. Wenn er diese Position erreicht hat, startet der Schubbetrieb mit der Krfat, die unterhalb des Kraft-Einstellwertes liegt. Das folgende Diagramm zeigt Einstellparameter und Betrieb. Die Einstellparameter und Einstzellwerte für diesen Betrieb sind unten angegeben.

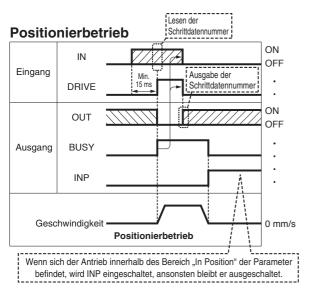
○: müssen eingestellt werden

Schrittdaten (Schubbetrieb)

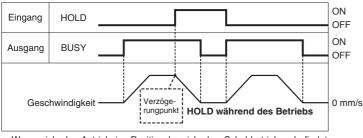
○: müssen den Anforderungen


Schr	ittdaten (Schubb	etrieb) entsprechend eingestellt werden	
Notwen- digkeit	Element	Details	
0	Movement MOD	Ist eine absolute Position erforderlich, stellen Sie "Absolute" ein. Ist eine relative Position erforderlich, stellen Sie "relative" ein.	
0	Speed	Verfahrgeschwindigkeit zur Schub-Startposition	
0	Position	Schub-Startposition	
0	Acceleration	,Beschleunigungsparameter je höher der Einstellwert, desto schneller erreicht der Antrieb die eingestellte Geschwindigkeit.	
0	Deceleration	Verzögerungsparameter, je höher der Einstellwert, desto schneller stoppt der Antrieb.	
0	Pushing Force	Das Schubverhältnis wird definiert. Der Einstellbereich variert je nach gewähltem elektrischen Antrieb. Siehe Betriebsanleitung des elektrischen Antriebs	
0	Trigger LV	Bedingung, die das INP-Ausgangssignal einschaltet. Das INP-Ausgangssignal schaltet sich ein, wenn die erzeugte Kraft den Wert überschreitet. Der Schwellenwert darf maxima dem Wert der Schubkraft entsprechen.	
0	Pushing Speed	Schubgeschwindigkeit. Wird die Geschwindigkeit auf einen hohen Wert eingestellt, können elektrischer Antrieb und Werkstücke aufgrund des Stoßes, beschädigt werden. Stellen Sie diesen Wert dementsprechend niedrig ein. Siehe Betriebsanleitung des elektrischen Antriebs.	
0	Positioning Force	Max. Drehmoment während des Positionierbetriebs (keine besondere Änderung erforderlich.)	
0	Area 1, Area 2	Bedingung, die das AREA-Ausgangssigna (Bereich) einschaltet.	
0	In Position	Verfahrweg während des Schubs. Übersteig der Verfahrweg diese Einstellung, kommt es ohne auch ohne Schub zum Stopp. Wird der Verfahrweg überschritten, schaltet sich das INP-Ausgangssignal nicht ein.	

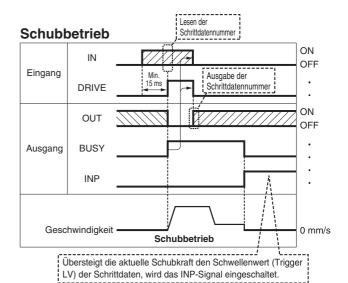
Serie JXC5H/6H

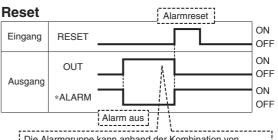

TabelleSignal-

Rückkehr zur Ausgangsposition (Referenzfahrt)


Wenn sich der Antrieb innerhalb des Bereich "In Position" der Parameter befindet, wird INP eingeschaltet, ansonsten bleibt er ausgeschaltet.

* "*ALARM" und "*ESTOP" werden als negativ-logischer Schaltkreis dargestellt.

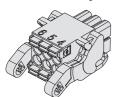



"OUT" wird ausgegeben, wenn sich "DRIVE" von ON auf OFF ändert. Für näherer Angaben zum Controller der Serie LEM siehe Betriebsanleitung. (Wenn die Spannungsversorgung angelegt wird, schalten sich "DRIVE" oder "RESET" ein oder "*ESTOP" schaltet sich aus, alle Ausgänge "OUT" sind ausgeschlatet.)

HOLD

Wenn sich der Antrieb im Positionsbereich des Schubbetriebes befindet, stoppt er auch dann nicht, wenn das HOLD-Signal eingegeben wird.

Die Alarmgruppe kann anhand der Kombination von OUT-Signale bei der Alarmerzeugung identifiziert werden.


"*ALARM" wird als negativ-logischer Schaltkreis dargestellt.

Optionen

■ Spannungsversorgungsstecker JXC-CPW

Der Spannungsversorgungsstecker ist ein Zubehörteil.
 Verwendbare Kabelgröße> AWG20 (0,5 mm²), Außendurchmesser max. 2,0 mm

6 5 4	
(3) (2) (1)	

① C24V ④ 0V ② M24V ⑤ N.C.

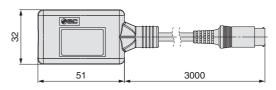
3 EMG 6 LK RLS

Anschluss für Stromversorgungsstecker

Klemmenbe- zeichnung	Funktion	Details
0V	Gemeinsame Versorgung (-)	M24V-Klemme/C24V-Klemme/EMG-Klemme LK RLS-K lemme sind gemeinsam (-)
M24V	Motor-Spannungversorgung (+)	Motor-Spannungversorgung (+) am Controller
C24V	Motor-Spannungsversorgung (+)	Steuerungs-Spannungversorgung (+) am Controller
EMG	Stopp Signal(+)	Positive Spannung für Stopp Signal Freigabe
LK RLS	Entriegelung (+)	Positive Spannung für Entriegelung

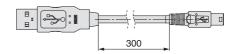
■ Kommunikationskabel für Controller-Einstellung

- Controller-Software
- USB-Treiber

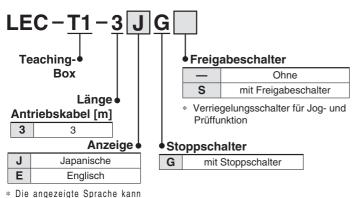

Von der SMC-Webseite herunterladen: https://www.smc.de

Systemvoraussetzungen Hardware

OS	Windows [®] 7, Windows [®] 8.1, Windows [®] 10
Kommunikations- schnittstelle	USB 1.1 oder USB 2.0-Anschlüsse
Anzeige	1024 x 768 oder höher


Windows®7, Windows®8.1 und Windows®10 sind registrierte Handelsmarken der Microsoft Corporation in den USA.

1) Kommunikationskabel JXC-W2A-C



* Kann direkt an den Controller angeschlossen werden.

② USB-Kabel LEC-W2-U

■Teaching Box

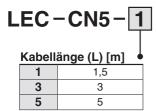
gewechselt werden. Technische Daten

zwischen Englisch und Japanisch

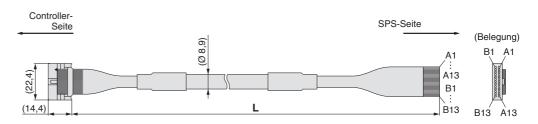
rechnische Daten	
Element	Beschreibung
Schalter	Stoppschalter, Schalter zum Aktivieren (Option)
Länge Antriebskabel [m]	3
Schutzart	IP64 (außer Stecker)
Betriebstemperaturbereich [°C]	5 bis 50
Luftfeuchtigkeitsbereich [%RH]	max. 90 (keine Kondensation)
Gewicht [g]	350 (außer Kabel)

* Für den Anschluss der Teaching Box (LEC-T1-3□G□) an den Controller wird ein Adapterkabel (P5062-5) benötigt. (siehe Seite 31.)

Serie JXC5H/6H


Optionen

■ Adapterkabel P5062-5 (Kabellänge: 300 mm)

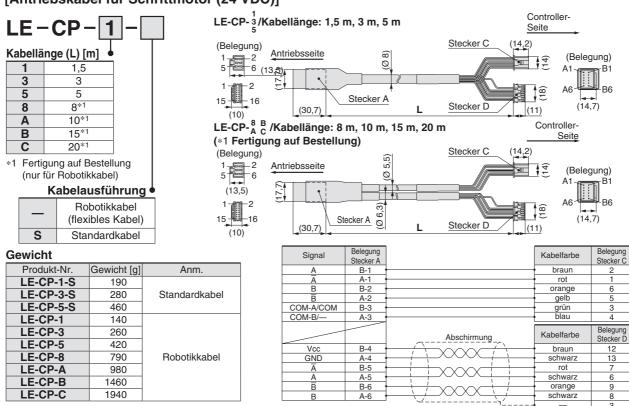


 $* \ \ \text{F\"{u}r den Anschluss der Teaching Box (LEC-T1-3 \square G \square) an den Controller wird ein Adapterkabel ben\"{o}tigt.}$

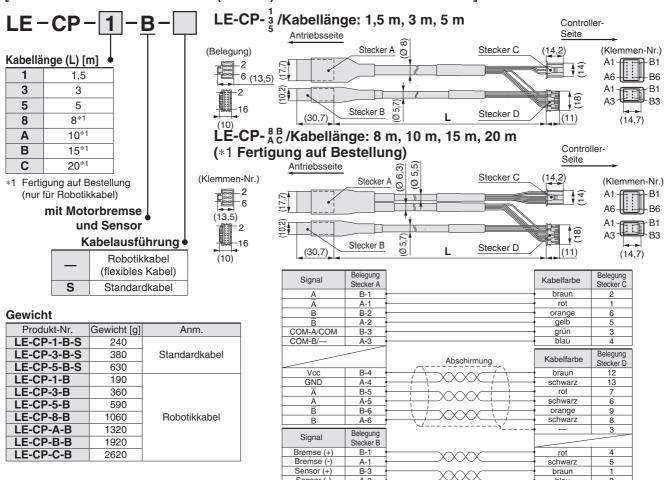
I/O-Kabel

Belegung	Isolierungs- farbe	Punktmarkierung	Punktfarbe
A1	hellbraun		schwarz
A2	hellbraun		rot
А3	gelb		schwarz
A4	gelb		rot
A5	hellgrün		schwarz
A6	hellgrün		rot
A7	grau		schwarz
A8	grau		rot
A9	weiß		schwarz
A10	weiß		rot
A11	hellbraun		schwarz
A12	hellbraun		rot
A13	gelb		schwarz

Belegung	Isolierungs- farbe	Punktmarkierung	Punktfarbe	
B1	gelb		rot	
B2	hellgrün		schwarz	
В3	hellgrün		rot	
B4	grau		schwarz	
B5	grau		rot	
B6	weiß		schwarz	
B7	weiß		rot	
B8	hellbraun		schwarz	
В9	hellbraun		rot	
B10	gelb		schwarz	
B11	gelb		rot	
B12	hellgrün		schwarz	
B13	Hellgrün		Rot	
_	Schirm			


Gewicht

Produkt-Nr.	Gewicht [g]
LEC-CN5-1	170
LEC-CN5-3	320
LEC-CN5-5	520


■ Handelsmarke

Optionen: Antriebskabel

[Antriebskabel für Schrittmotor (24 VDC)]

[Antriebskabel für Schrittmotor (24 VDC) mit Motorbremse und Sensor]

Diese Sicherheitsvorschriften sollen vor gefährlichen Situationen und/oder Sachschäden schützen. In diesen Hinweisen wird die potenzielle Gefahrenstufe mit den Kennzeichnungen "Achtung", "Warnung" oder "Gefahr" bezeichnet. Diese wichtigen Sicherheitshinweise müssen zusammen mit internationalen Sicherheitsstandards (ISO/ IEC) 1) und anderen Sicherheitsvorschriften beachtet werden.

∧ Achtung:

Achtung verweist auf eine Gefährdung mit geringem Risiko, die leichte bis mittelschwere Verletzungen zur

Folge haben kann, wenn sie nicht verhindert wird. Warnung verweist auf eine Gefährdung mit mittlerem

Warnung: Risiko, die schwere Verletzungen oder den Tod zur Folge haben kann, wenn sie nicht verhindert wird.

Gefahr verweist auf eine Gefährdung mit hohem Risiko, die schwere Verletzungen oder den Tod zur Folge hat, wenn sie nicht verhindert wird.

1) ISO 4414: Pneumatische Fluidtechnik -- Empfehlungen für den Einsatz von Geräten für Leitungs- und Steuerungssysteme.

ISO 4413: Fluidtechnik - Ausführungsrichtlinien Hydraulik. IEC 60204-1: Sicherheit von Maschinen – Elektrische Ausrüstung von Maschinen (Teil 1: Allgemeine Anforderungen)

ISO 10218-1: Industrieroboter - Sicherheitsanforderungen.

∧ Warnung

1. Verantwortlich für die Kompatibilität bzw. Eignung des Produkts ist die Person, die das Sys-tem erstellt oder dessen technische Daten

Da das hier beschriebene Produkt unter verschiedenen Betriebsbedingungen eingesetzt wird, darf die Entscheidung über dessen Eignung für einen bestimmten Anwendungsfall erst nach genauer Analyse und/oder Tests erfolgen, mit denen die Erfüllung der spezifischen Anforderungen überprüft wird.

Die Erfüllung der zu erwartenden Leistung sowie die Gewährleistung der Sicherheit liegen in der Verantwortung der Person, die die Systemkompatibilität festgestellt hat.

Diese Person muss anhand der neuesten Kataloginformation ständig die Eignung aller Produktdaten überprüfen und dabei im Zuge der Systemkonfiguration alle Möglichkeiten eines Geräteausfalls ausreichend berücksichtigen.

2. Maschinen und Anlagen dürfen nur von entsprechend geschultem Personal betrieben wer-den.

Das hier beschriebene Produkt kann bei unsachgemäßer Handhabung

Montage-, Inbetriebnahme- und Reparaturarbeiten an Maschinen und Anlagen, einschließlich der Produkte von SMC, dürfen nur von entsprechend geschultem und erfahrenem Personal vorgenommen

3. Wartungsarbeiten an Maschinen und Anlagen oder der Ausbau einzelner Komponenten dür-fen erst dann vorgenommen werden, wenn die Sicherheit gewährleistet ist.

Inspektions- und Wartungsarbeiten an Maschinen und Anlagen dürfen erst dann ausgeführt werden, wenn alle Maßnahmen überprüft wurden, die ein Herunterfallen oder unvorhergesehene Bewegungen des angetriebenen Objekts verhindern.

Vor dem Ausbau des Produkts müssen vorher alle oben genannten Sicherheitsmaßnahmen ausgeführt und die Stromversorgung abgetrennt werden. Außerdem müssen die speziellen Vorsichtsmaßnahmen für alle entsprechenden Teile sorgfältig gelesen und verstanden worden sein. Vor dem erneuten Start der Maschine bzw. Anlage sind Maßnahmen zu treffen, um unvorhergesehene Bewegungen des Produkts oder Fehlfunktionen zu verhindern.

- 4. Die in diesem Katalog aufgeführten Produkte werden ausschließlich für die Verwendung in der Fertigungsindustrie und dort in der Automatisierungstechnik konstruiert und hergestellt. Für den Einsatz in anderen Anwendungen oder unter den im folgenden aufgeführten Bedingungen sind diese Produkte weder konstruiert, noch ausgelegt:
 - 1) Einsatz- bzw. Umgebungsbedingungen, die von den angegebenen technischen Daten abweichen, oder Nutzung des Produkts im Freien oder unter direkter Sonneneinstrahlung.
 - 2) Installation innerhalb von Maschinen und Anlagen, die in Verbindung mit Kernenergie, Eisenbahnen, Luft- und Raumfahrttechnik, Schiffen, Kraftfahrzeugen, militärischen Einrichtungen, Verbrennungsanlagen, medizinischen Geräten, Medizinprodukten oder Freizeitgeräten eingesetzt werden oder mit Lebensmitteln und Getränken, Notausschaltkreisen, Kupplungs- und Bremsschaltkreisen in Stanz- und Pressanwendungen, Sicherheitsausrüstungen oder anderen Anwendungen in Kontakt kommen, soweit dies nicht in der Spezifikation zum jeweiligen Produkt in diesem Katalog ausdrücklich als Ausnahmeanwendung für das jeweilige Produkt angegeben ist.

∧ Achtung

- 3) Anwendungen, bei denen die Möglichkeit von Schäden an Personen, Sachwerten oder Tieren besteht und die eine besondere Sicherheitsanalyse verlangen.
- 4) Verwendung in Verriegelungssystemen, die ein doppeltes Verriegelungssystem mit mechanischer Schutzfunktion zum Schutz vor Ausfällen und eine regelmäßige Funktionsprüfung erfordern.

Bitte kontaktieren Sie SMC damit wir Ihre Spezifikation für spezielle Anwendungen prüfen und Ihnen ein geeignetes Produkt anbieten können.

Achtung

1. Das Produkt wurde für die Verwendung in der herstellenden Industrie konzipiert.

Das hier beschriebene Produkt wurde für die friedliche Nutzung in Fertigungsunternehmen entwickelt. Wenn Sie das Produkt in anderen Wirtschaftszweigen verwenden möchten, müssen Sie SMC vorher informieren und bei Bedarf entsprechende technische Daten aushändigen oder einen gesonderten Vertrag unterzeichnen.

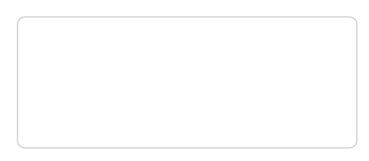
Wenden Sie sich bei Fragen bitte an die nächste SMC-Vertriebsniederlassung.

Einhaltung von Vorschriften

Das Produkt unterliegt den folgenden Bestimmungen zur "Einhaltung von Vorschriften".

Lesen Sie diese Punkte durch und erklären Sie Ihr Einverständnis, bevor Sie das Produkt verwenden.

Einhaltung von Vorschriften


- 1. Die Verwendung von SMC-Produkten in Fertigungsmaschinen von Herstellern von Massenvernichtungswaffen oder sonstigen Waffen ist strengstens untersagt.
- 2. Der Export von SMC-Produkten oder -Technologie von einem Land in ein anderes hat nach den geltenden Sicherheitsvorschriften und -normen der an der Transaktion beteiligten Länder zu erfolgen. Vor dem internationalen Versand eines jeglichen SMC-Produkts ist sicherzustellen, dass alle nationalen Vorschriften in Bezug auf den Export bekannt sind und befolgt werden.

Achtung

SMC-Produkte sind nicht für den Einsatz als Geräte im gesetzlichen Messwesen bestimmt.

Bei den von SMC hergestellten oder vertriebenen Produkten handelt es sich nicht um Messinstrumente, die durch Musterzulassungsprüfungen gemäß den Messgesetzen eines jeden Landes qualifiziert wurden.

Daher können SMC-Produkte nicht für betriebliche Zwecke oder Zulassungen verwendet werden, die den geltenden Rechtsvorschriften für Messungen des jeweiligen Landes unterliegen.

SMC Corporation (Europe)

+43 (0)2262622800 www.smc.at Austria office@smc.at Belgium +32 (0)33551464 www.smc.be info@smc.be Bulgaria +359 (0)2807670 www.smc.bg office@smc.bg Croatia +385 (0)13707288 www.smc.hr office@smc.hr **Czech Republic** +420 541424611 office@smc.cz www.smc.cz +45 70252900 smc@smcdk.com Denmark www.smcdk.com Estonia +372 6510370 www.smcpneumatics.ee smc@info@smcee.ee Finland +358 207513513 www.smc.fi smcfi@smc.fi France +33 (0)164761000 www.smc-france.fr info@smc-france.fr Germany +49 (0)61034020 www.smc.de info@smc.de +30 210 2717265 Greece www.smchellas.gr sales@smchellas.gr Hungary +36 23513000 www.smc.hu office@smc.hu Ireland +353 (0)14039000 www.smcautomation.ie sales@smcautomation.ie Italy +39 03990691 www.smcitalia.it mailbox@smcitalia.it Latvia +371 67817700 info@smc.lv www.smc.lv

Lituania +370 5 2308118 www.smclt.lt info@smclt.lt **Netherlands** +31 (0)205318888 www.smc.nl info@smc.nl Norway +47 67129020 www.smc-norge.no post@smc-norge.no Poland +48 222119600 office@smc.pl www.smc.pl apoioclientept@smc.smces.es Portugal +351 214724500 www.smc.eu +40 213205111 Romania www.smcromania.ro smcromania@smcromania.ro Russia +7 8127185445 www.smc-pneumatik.ru info@smc-pneumatik.ru Slovakia +421 (0)413213212 www.smc.sk office@smc.sk Slovenia +386 (0)73885412 www.smc.si office@smc.si Spain +34 945184100 www.smc.eu post@smc.smces.es +46 (0)86031240 Sweden www.smc.nu smc@smc.nu Switzerland +41 (0)523963131 www.smc.ch info@smc.ch Turkey +90 212 489 0 440 www.smcpnomatik.com.tr info@smcpnomatik.com.tr UK +44 (0)845 121 5122 www.smc.uk sales@smc.uk