Elektrischer Antrieb

High Performance

Schlittenausführung mit hoher Steifigkeit und Präzision

Schrittmotor 24 VDC, batterieloser Absolut-Encoder

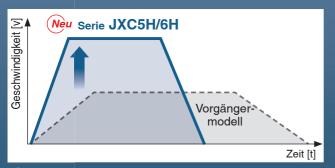
Reduziert die Zykluszeit

Zykluszeit

Reduziert um 39 % (0,93 s → 0,57 s) im Vergleich zum bestehenden Modell*1

*1 Wenn die Serie LEKFS25GH-400 von 0 bist 400 mm (Hub) betrieben wird.

Beschleunigung/ Verzögerung


10000 mm/s²

(334 % höher im Vergleich zur bestehenden Serie)

Maximale Geschwindigkeit

 $1500 \, \text{mm/s}$

(Um 25 % besser im Vergleich zur bestehenden Serie)

Einfacher Neustart nach Wiederherstellung der Spannungsversorgung

Die Position des Antriebs wird vom Encoder gespeichert, auch wenn die Spannungsversorgung abgeschaltet wird. Nach Wiederherstellung der Spannungsversorgung ist keine Referenzpunktfahrt erforderlich.

Ein maximaler Hub von bis zu 1200 mm wird unterstützt

Hublängen sind in 50-mm-Schritten verfügbar

Erfordert keine Batterien.

Geringerer Wartungsaufwand

Zur Speicherung der Positionsdaten werden keine Batterien verwendet. Daher müssen keine Ersatzbatterien gelagert oder entladene Batterien ausgetauscht werden.

High Performance Schrittmotor-Controller

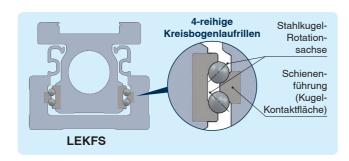
Ermöglicht die Einstellung einer höheren Beschleunigung und maximalen Geschwindigkeit mit dem speziellen Controller (für Serie LEKFS□G).

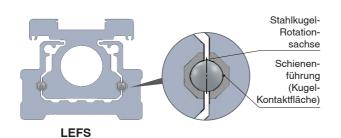
Parallel-I/O

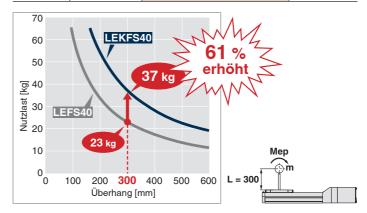
Serie JXC5H/6H s. 31

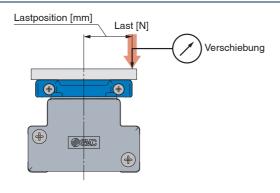
EtherCAT/EtherNet/IP™/PROFINET

Serie s. 38 JXCEH/9H/PH

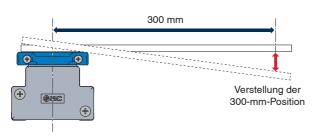



Mit einer zweireihigen Kugelumlaufführung auf jeder Seite für hohe Steifigkeit und hohe Präzision (ohne Spiel)


■ Verbessertes Belastungsmoment


Verbessertes zulässiges dynamisches Moment

Größe	Bewegungs-	Nutzlast [kg] (Überhang: 300 mm)		
	richtung	Führung mit hoher Steifigkeit LEKFS	LEFS	
25		7,5 (10 % erhöht)	6,8	
32	Kippmoment (Mep)	18 (35 % erhöht)	13,3	
40		37 (61 % erhöht)	23	

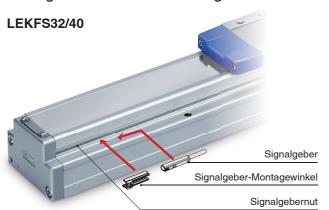

■ Schlittenabweichung um die Hälfte verringert

Schlittenabweichung

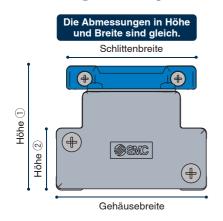
Größe	Abweichung Schlittenpositi	Last- position	Last		
Grobe	Führung mit hoher Steifigkeit LEKFS	LEFS	[mm]	[N]	
25	0,022 (50 % reduziert)	0,044	25	200	
32	0,036 (50 % reduziert)	0,072	30	450	
40	0,027 (50 % reduziert)	0,053	37	500	

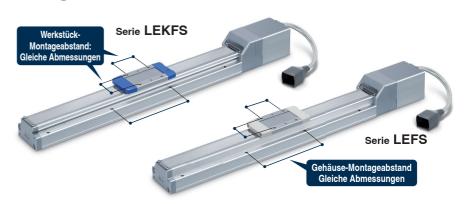
■ Kein Schlittenspiel

* Die Abbildung zeigt den Verstellungsbetrag bei Nulllast.


Schlittenspiel

Größe	Abweichung durch Schlittenspiel [mm]		
	Führung mit hoher Steifigkeit LEKFS	LEFS	
25	0	0,079	
32	0	0,068	
40	0	0,052	


Signalgeber optional montierbar


Ermöglicht die Positionsabfrage des Schlittens über den gesamten Hubweg

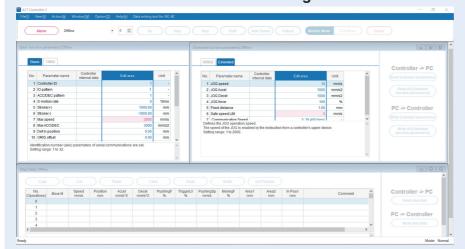
Gleiche Abmessungen wie Serie LEF/Vollständige Montagekompatibilität ist gewährleistet.

Die Positionierstiftbohrungen an der Gehäuseunterseite wurden standardisiert. Die verbesserte Haftfähigkeit erhöht die Staubschutzleistung und reduziert die Wellenbildung des Staubschutzbandes. Magnet für die Haftfähigkeit erhöht die Staubschutzleistung und reduziert die Wellenbildung des Staubschutzbandes.

多SMC

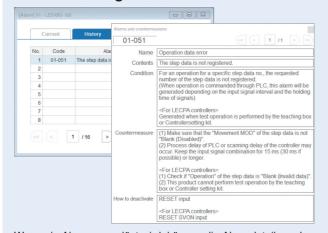
Ausführung mit Schrittdateneingabe Serie JXC5H/6H [5.31]

Controller-Einstellungssoftware ACT Controller 2



Benutzerfreundliche Einstellungssoftware ACT Controller 2 (für PC)

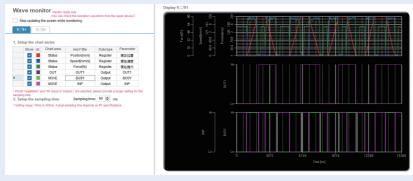
Verschiedene Funktionen im "Normal Mode" verfügbar (im Vergleich zum


bestehenden ACT-Controller)

Parameter- und Schrittdaten-Einstellung

* Kunden, die einen Computer mit anderen Betriebssystemen als Windows 10/64 Bit betreiben, sollten den vorhandenen ACT-Controller verwenden.

Alarm-Anzeige



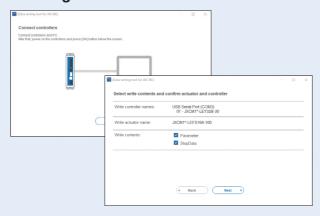
Wenn ein Alarm ausgelöst wird, können die Alarmdetails und Gegenmaßnahmen bestätigt werden.

Wenn ein Alarm ausgelöst wird, kann die kumulierte Start-up-Zeit des Controllers bestätigt werden.

Aufzeichnung von Signalverläufen

Position, Geschwindigkeit, Kraft und die Eingangs-/Ausgangssignale können während des Betriebs gemessen werden.

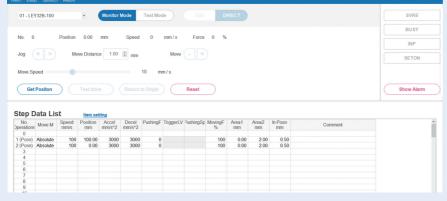
* Bei Verwendung der Testbetriebsfunktion des ACT-Controllers 2 ist die Aufzeichnung von Signalverläufen nicht möglich.


Ausführung mit Schrittdateneingabe Serie JXC5H/6H 8.31

Controller-Einstellungssoftware ACT Controller 2

Konfigurations-Tool für JXC-BC

Mit dem Konfigurations-Tool können die Parameter und Schrittdaten des angeschlossenen Antriebs in einen unbeschriebenen Controller der Serie JXC geschrieben werden.


Anpassbare Plug-in-Funktionen

Die angezeigten Plug-in-Funktionen sowie die Reihenfolge der Anzeige sind anpassbar. Kunden können die von ihnen benötigten Funktionen hinzufügen.

Im Normal Mode stehen verschiedene andere Testbetriebsmethoden (Programmbetrieb, Jog-Betrieb, Verschieben mit einer konstanten Rate usw.), die Überwachung des Signalstatus, ein One-Touch-Schalter zwischen Japanisch und Englisch und andere Funktionen zur Verfügung.

Für den sofortigen Einsatz wählen Sie den "Easy Mode" für den Betrieb.

Die Einstellung der Schrittdaten, verschiedene Testvorgänge und die Statusbestätigung können auf einem einzigen Bildschirm vorgenommen werden.

Laden Sie die Einstellsoftware ACT Controller 2 von der SMC-Website herunter: www.smc.eu

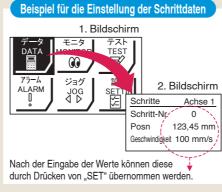
Ausführung mit Schrittdateneingabe serie JXC5H/6H s. 31

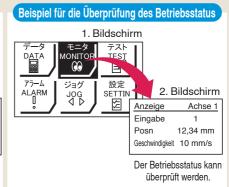

Teaching-Box

Normal Mode

- Verschiedene Schrittdaten können in der Teaching-Box gespeichert und an den Controller übertragen werden.
- Kontinuierlicher Testbetrieb mit bis zu 5 Schrittdaten.

Teaching-Box-Maske


 Die einzelnen Funktionen (Schrittdaten, Test, Überwachung usw.) können aus dem Hauptmenü gewählt werden.



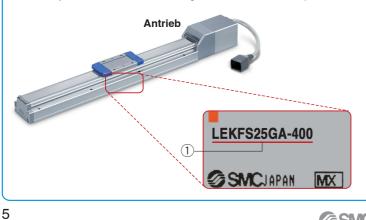
© Easy Mode

- Die einfache Maske ohne Scrollfunktion ermöglicht eine einfache Einstellung und Bedienung.
- Wählen Sie ein Symbol im ersten Bildschirm, um eine Funktion auszuwählen.
- Stellen Sie die Schrittdaten ein und überprüfen Sie diese in einer weiteren Maske.

Teaching Box Maske

 Dateneinstellung durch Eingabe von **Position und Geschwindigkeit** (Andere Bedingungen sind voreingestellt.)

Achse 1
0
50,00 mm
200 mm/s


Schritte Achse 1 Schritt-Nr. Position 80,00 mm Geschwindigkeit 100 mm/s

Antrieb und Controller werden als Paket geliefert. (Komponenten können auch separat bestellt werden.)

Stellen Sie sicher, dass die Kombination aus Controller und Antrieb korrekt ist.

<Prüfen Sie vor der Verwendung folgende Punkte>

- ① Überprüfen Sie die Modellnummer auf dem Typenschild des Antriebs. Diese Nummer muss mit der des Controllers übereinstimmen.
- ② Überprüfen Sie, ob die I/O-Konfiguration übereinstimmt (NPN oder PNP).

Funktion

Element	Ausführung mit Schrittdateneingabe JXC5H/6H	
Schrittdaten und Parametereinstellung	Eingabe über Controller-Einstellungssoftware (PC) Eingabe über Teaching-Box	
Positionseinstellung der Schrittdaten	Numerische Werteingabe über die Controller-Einstellsoftware (PC) oder die Teaching-Box Eingabe eines numerischen Wertes Direktes Teaching JOG-Teaching	
Anzahl der Schrittdaten	64 Punkte	
Fahrbefehl (I/O-Signal)	Eingabe [IN [∗]] Eingang ⇒ [DRIVE] Eingang	
Abschlusssignal	INP-Ausgang	

Einstellparameter

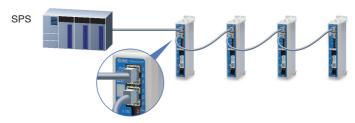
TB: Teaching-Box PC: Controller-Software

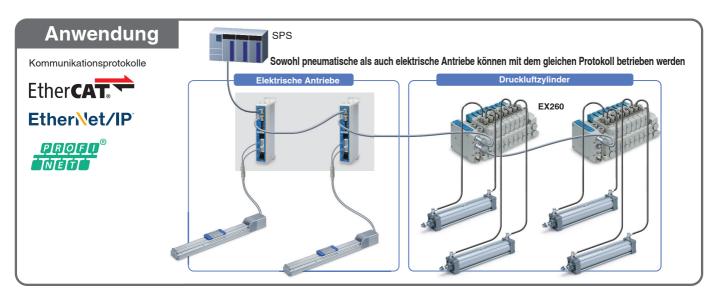
Element		Inhalt		SY- ode	NORMAL- Mode	Ausführung mit Schrittdateneingabe	
				PC	TB/PC	JXC5H/6H	
	Bewegungsart MOD	Auswahl "absolute Position" und "relative Position"	Δ	•	•	Eingestellt auf ABS/INC	
	Geschwindigkeit	Verfahrgeschwindigkeit	•	•	•	Einstellung in Einheiten von 1 mm/s	
	Position	[Position]: Zielposition [Schieben]: Schub-Startposition	•	•	•	Einstellung in Einheiten von 0,01 mm	
	Beschleunigung/Verzögerung	Beschleunigung/Verzögerung während der Bewegung	•	•	•	Einstellung in Einheiten von 1 mm/s²	
Schrittdaten-	Schubkraft	Krafteinsatz während des Schubbetriebs	•	•	•	Einstellung in Einheiten von 1 %	
Einstellung (Auszug)	Trigger LV	Schwellenwert der Zielkraft während des Vorschubbetriebs	Δ	•	•	Einstellung in Einheiten von 1 %	
	Schubgeschwindigkeit	Geschwindigkeit während des Schubbetriebs	Δ	•	•	Einstellung in Einheiten von 1 mm/s	
	Stellkraft	Kraft während des Positionierbetriebs	Δ	•	•	Auf 100 % eingestellt	
	Bereichsausgang	Bedingungen für Einschaltung des Bereichsausgangssignals	Δ	•	•	Einstellung in Einheiten von 0,01 mm	
	In Position	[Position]: Abstand zur Zielposition [Schieben]: Umfang der Bewegung beim Schieben	Δ	•	•	Einstellung auf 0,5 mm oder mehr (Einheiten: 0,01 mm)	
	Hub (+)	+ seitliche Positionsbegrenzung	X	Х	•	Einstellung in Einheiten von 0,01 mm	
Parameter-	Hub (-)	- seitliche Positionsbegrenzung	X	Х	•	Einstellung in Einheiten von 0,01 mm	
einstellung	Richtung Ausgangsposition	Richtung der Rückkehr zur Ausgangsposition kann eingestellt werden.	X	Х	•	Kompatibel	
(Auszug)	Geschwindigkeit Ausgangsposition	Geschwindigkeit bei der Rückkehr zur Ausgangsposition	X	Х	•	Einstellung in Einheiten von 1 mm/s	
	AusgangspositionBeschl.	Beschleunigung bei der Rückkehr zur Ausgangsposition	X	X	•	Einstellung in Einheiten von 1 mm/s²	
	JOG		•	•	•	Der Dauerbetrieb mit der eingestellten Geschwindigkeit kann getestet werden, während der Schalter gedrückt wird.	
Test	BEWEGEN		X	•	•	Der Betrieb kann mit dem eingestellten Abstand und der Geschwindigkeit von der aktuellen Position aus getestet werden.	
	Zurück zur Ausgangsposition		•	•	•	Kompatibel	
	Testlauf	Verwendung der angegebenen Schrittdaten	•	•	(Kontinuierlicher Betrieb)	Kompatibel	
	Erzwungene Ausgabe	ON/OFF der Ausgangsklemme kann getestet werden.	X	X	•	Kompatibel	
A	Überw. DRV	Die aktuelle Position, die Geschwindigkeit, die Kraft und die angegebenen Schrittdaten können überwacht werden.	•	•	•	Kompatibel	
Anzeige	Überw. IN/OUT	Der aktuelle ON/OFF-Status der Ein-/ Ausgangsklemme kann überwacht werden.	Х	X	•	Kompatibel	
ALM	Status	Der aktuell generierte Alarm kann bestätigt werden.	•	•	•	Kompatibel	
ALM	ALARM-Protokollaufzeichnung	In der Vergangenheit generierte Alarme können bestätigt werden.	X	Х	•	Kompatibel	
Datei	Speichern/Laden	Schrittdaten und Parameter können gespeichert, weitergeleitet und gelöscht werden.	Х	X	•	Kompatibel	
Sonstiges	Sprache	Kann auf Japanisch oder Englisch eingestellt werden	•	•	•	Kompatibel	

Feldbussystem

EtherCAT/EtherNet/IP™/PROFINET Direkteingangstyp Schrittmotor-Controller/Serie JXC H 8.38

○Zwei verschiedene Arten von Fahrbefehlen ○Daisy Chain Verdrahtungsschema


Eingabe der Schritt-Nummer: Betrieb durch Verwendung der voreingestellten Schrittdaten im Controller.

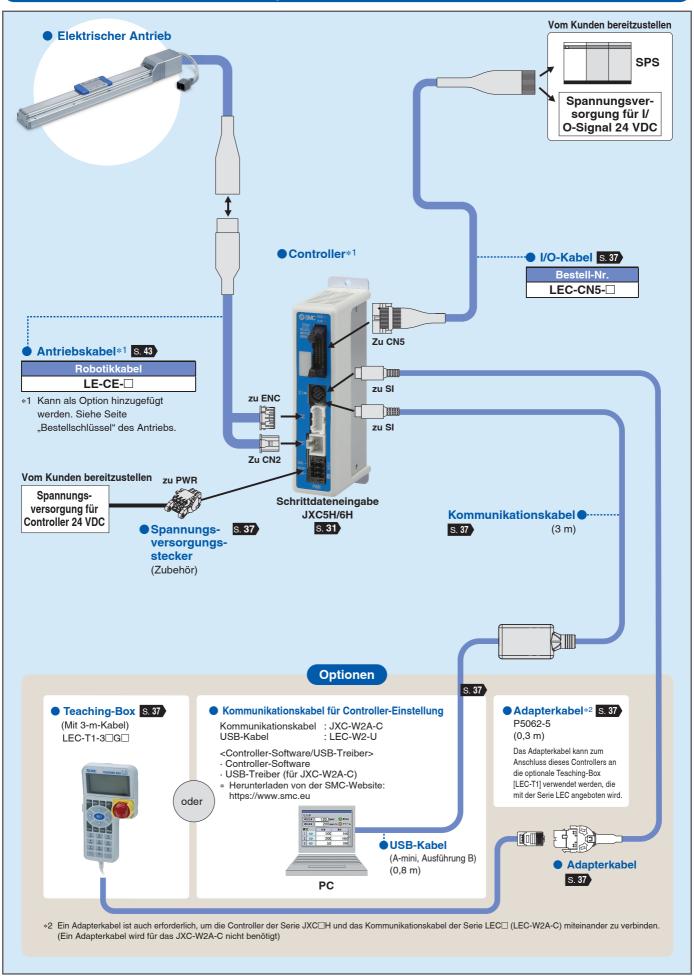

Numerische Dateneingabe: Der Antrieb arbeitet mit Werten wie Position und Geschwindigkeit von einer übergeordneten Steuerung.

Clesen von Statusdaten

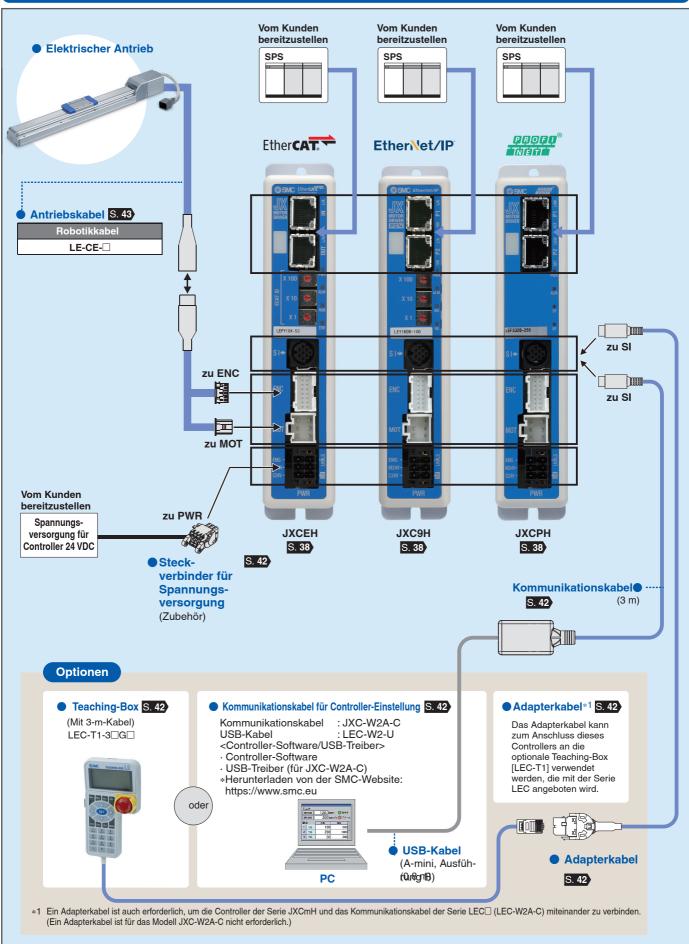
Statusdaten, wie z. B. die aktuelle Geschwindigkeit und Position sowie Alarmcodes, können über eine SPS gelesen werden.

Es stehen zwei Kommunikationsanschlüsse zur Verfügung.

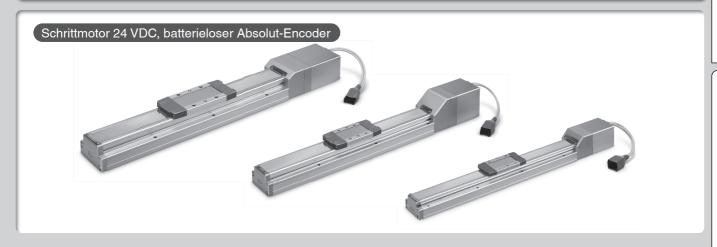
Controller-Einstellungssoftware ACT-Controller 2 Ab S. 3


Benutzerfreundliche Einstellungssoftware ACT-Controller 2 (für PC)

Verschiedene Funktionen im Normal Mode erhältlich (im Vergleich zum bestehenden ACT-Controller)


- Parameter- und Schrittdaten-Einstellung
- Schreib-Tool JXC-BC
- Alarmliste
- Anpassbare Plug-in-Funktionen
- Aufzeichnung von Signalverläufen
- * Kunden, die einen Computer mit anderen Spezifikationen Daten als Windows 10/64 Bit betreiben, sollten den vorhandenen ACT-Controller verwenden.

System-Aufbau


System-Aufbau (EtherCAT/EtherNet/IP™/Direkteingangstyp)

Elektrischer Antrieb

High Performance Schlittenausführung mit hoher Steifigkeit und Präzision

Schlittenausführung mit hoher Steifigkeit und Präzision Serie LEKFS G

INHALT

High Performance Schlittenausführung mit hoher Steifigkeit und Präzision Serie LEKFS G 5. 10

Schrittmotor 24 VDC, batterieloser Absolut-Encoder

Typenauswahl	S. 11
Bestellschlüssel ·····	S. 18
Technische Daten	S. 20
Abmessungen ·····	S. 21
Signalgebermontage ·····	S. 27

Controller Serie JXC H S.30

High Performance Controller (Ausführung mit Schrittdateneingabe) Serie JXC5H/6H Schrittmotor 24 VDC, batterieloser Absolut-Er

Bestellschlüssel	S. 31
Technische Daten	S. 31
Abmessungen ·····	S. 33
Optionen ·····	S. 37
Antriebskabel	S. 43

High Performance Controller Serie JXCEH/9H/PH Schrittmotor 24 VDC, batterieloser Absolut-Encoder

Bestellschlüssel ····	S.	38
Technische Daten	S.	39
Abmessungen	S.	40
Optionen ·····	S.	42
Antriebskabel	S.	43

batterieloser Absolut-Encoder produktspezifische Sicherheitshinweise	 S.	44
CF/UKCA/UI -Konformitätsliste	 s.	4.5

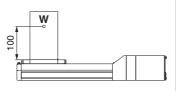
Schlittenausführung mit hoher Steifigkeit und Präzision

Serie LEKFS G (Schrittmotor 24 VDC, batterieloser Absolut-Encoder

Typenauswahl

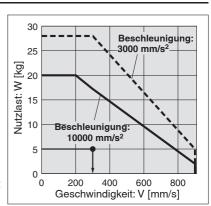
Auswahlverfahren

Überprüfen Sie die Zykluszeit.


Überprüfen Sie das zulässige Moment.

Auswahlbeispiel

Betriebsbedingungen


- •Werkstückgewicht: 5 kg
- Geschwindigkeit: 300 [mm/s]
- Beschleunigung/Verzögerung: 10000 [mm/s²]
- Hub: 200 [mm]
- Einbaurichtung: Horizontal ansteigend

Werkstückmontage:

Schritt 1 Überprüfen Sie das Verhältnis Nutzlast-Geschwindigkeit. < Geschwindigkeits-/Nutzlast-Diagramm> (Seiten 5 bis 7) Wählen Sie das Modell entsprechend dem Werkstückgewicht und Geschwindigkeit unter Berücksichtigung des Geschwindigkeits-/Nutzlast-Diagramms.

Auswahlbeispiel) Das Modell LEKFS25GA-200 kann vorübergehend als mögliches Modell anhand des Diagramms auf der rechten Seite gewählt werden.

<Geschwindigkeits-Nutzlast-Diagramm> (LEKFS25GA/batterieloser Absolut-Encoder)

Schritt 2 Überprüfen Sie die Zykluszeit.

Berechnen Sie die Zykluszeit mit der Berechnungsbeispiel) folgenden Berechnungsmethode.

Zykluszeit:

T wird aus folgender Gleichung berechnet. T1 = V/a1 = 300/10000 = 0,03 [s],

$$T = T1 + T2 + T3 + T4 [s]$$

•T1: Beschleunigungszeit und T3: Die Verzögerungszeit kann anhand der folgenden Gleichung ermittelt werden.

T2: Die Zeit mit konstanter Geschwindigkeit kann anhand der folgenden Gleichung berechnet werden.

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V} [s]$$

•T4: Die Einschwingzeit ist abhängig von Bedingungen wie Motortyp, Last und der Positionierung.

Referenzwert für die Einschwingzeit:

0.15 s oder weniger

Der folgende Wert wird für diese

Berechnung verwendet.

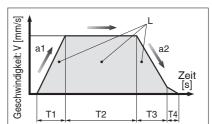
$$T4 = 0.15 [s]$$

T1 bis T4 können wie folgt ermittelt werden.

$$T1 = V/a1 = 300/10000 = 0.03 [s]$$

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V}$$
$$= \frac{200 - 0.5 \cdot 300 \cdot (0.03 + 0.03)}{300}$$

$$= 0.64 [s]$$


$$T4 = 0.15 [s]$$

Die Zykluszeit kann wie folgt berechnet werden.

$$T = T1 + T2 + T3 + T4$$

$$= 0.03 + 0.64 + 0.03 + 0.15$$

$$= 0.85 [s]$$

- L: Hub [mm] ... (Betriebszustand)
- V: Geschwindigkeit [mm/s] ... (Betriebszustand)
- a1: Beschleunigung [mm/s2] ... (Betriebsbedingung)
- a2: Verzögerung [mm/s²] ... (Betriebsbedingung)

T1: Beschleunigungszeit [s]

Zeit bis zum Erreichen der eingestellten Geschwindigkeit

T2: Zeit der konstanten Geschwindigkeit [s]

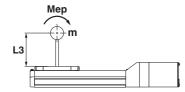
Zeit, während der der Antrieb mit konstanter

Geschwindigkeit betrieben wird

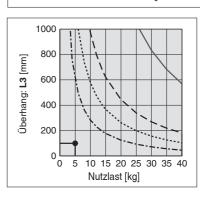
T3: Verzögerungszeit [s]

Zeit vom Beginn des Betriebs mit konstanter

Geschwindigkeit bis zum Stopp


T4: Ausregelzeit [s]

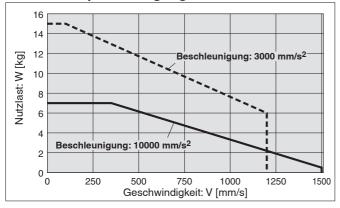
Zeit bis zum Abschluss der Positionierung

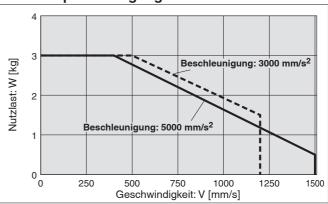


Schritt 3 Überprüfen Sie das zulässige Moment. <Statisches zulässiges Moment> (Seite 14) <Dynamisches zulässiges Moment> (Seiten 15, 16)

Stellen Sie sicher, dass das auf den Antrieb wirkende Moment innerhalb des zulässigen Bereichs sowohl für die statischen als auch für die dynamischen Bedingungen liegt.

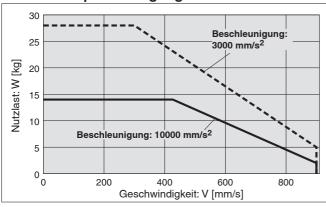
Basierend auf dem obigen Berechnungsergebnis sollte das Modell LEKFS25GA-200 gewählt werden.


* Wenn der Schrittmotor und die Servomotoren nicht Ihren Anforderungen entsprechen, sollten Sie auch die AC-Servospezifikation berücksichtigen.

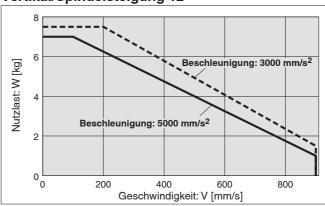

Geschwindigkeits-Nutzlast-Diagramm (Führung) * Die folgenden Diagramme zeigen die Werte bei einer Bewegungskraft von 100 %.

LEKFS25GH/Spindelantrieb

Horizontal/Spindelsteigung 20

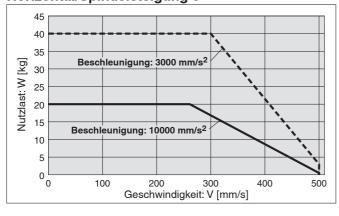


Vertikal/Spindelsteigung 20mm

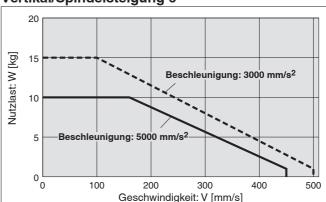


LEKFS25GA/Spindelantrieb

Horizontal/Spindelsteigung 12



Vertikal/Spindelsteigung 12

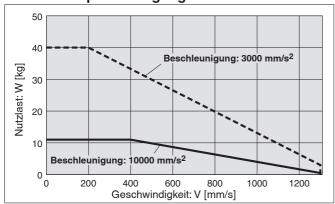


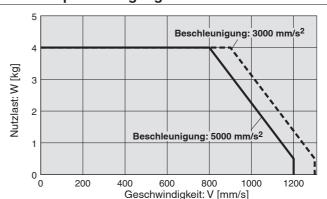
LEKFS25GB/Spindelantrieb

Horizontal/Spindelsteigung 6

Vertikal/Spindelsteigung 6

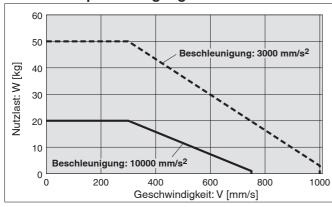
Betriebstemperatur: Verwenden Sie Produkte mit einer Einschaltdauer von 100 % oder weniger, wenn die Temperatur unter 30 °C liegt, und mit einer Einschaltdauer von 35 % oder weniger, wenn die Temperatur über 30 °C liegt.



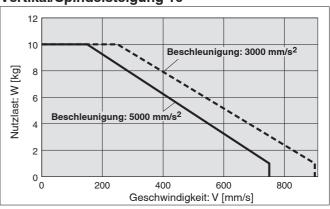

Geschwindigkeits-Nutzlast-Diagramm (Führung) * Die folgenden Diagramme zeigen die Werte bei einer Bewegungskraft von 100 %.

LEKFS32GH/Spindelantrieb

Horizontal/Spindelsteigung 24

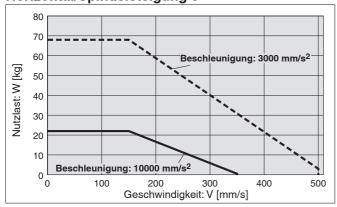


Vertikal/Spindelsteigung 24mm

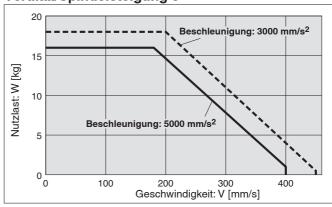


LEKFS32GA/Spindelantrieb

Horizontal/Spindelsteigung 16



Vertikal/Spindelsteigung 16

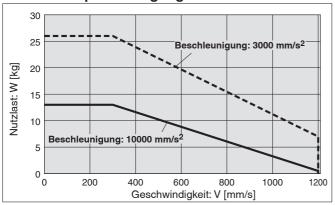


LEKFS32GB/Spindelantrieb

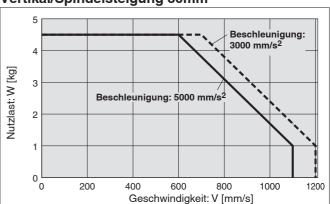
Horizontal/Spindelsteigung 8

Vertikal/Spindelsteigung 8

Betriebstemperatur: Verwenden Sie Produkte mit einer Einschaltdauer von 100 % oder weniger, wenn die Temperatur unter 30 °C liegt, und mit einer Einschaltdauer von 35 % oder weniger, wenn die Temperatur über 30 °C liegt.

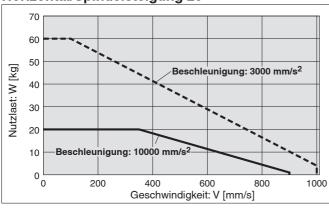


Geschwindigkeits-Nutzlast-Diagramm (Führung)

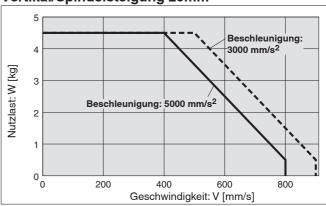

* Die folgenden Diagramme zeigen die Werte bei einer Bewegungskraft von 100 %.

LEKFS40GH/Spindelantrieb

Horizontal/Spindelsteigung 30

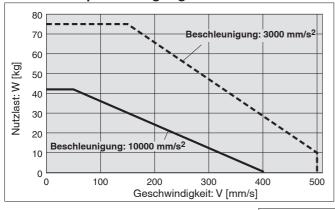


Vertikal/Spindelsteigung 30mm

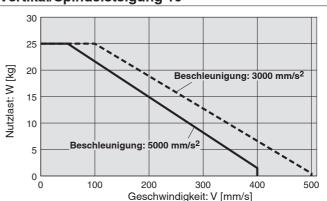


LEKFS40GA/Spindelantrieb

Horizontal/Spindelsteigung 20



Vertikal/Spindelsteigung 20mm



LEKFS40GB/Spindelantrieb

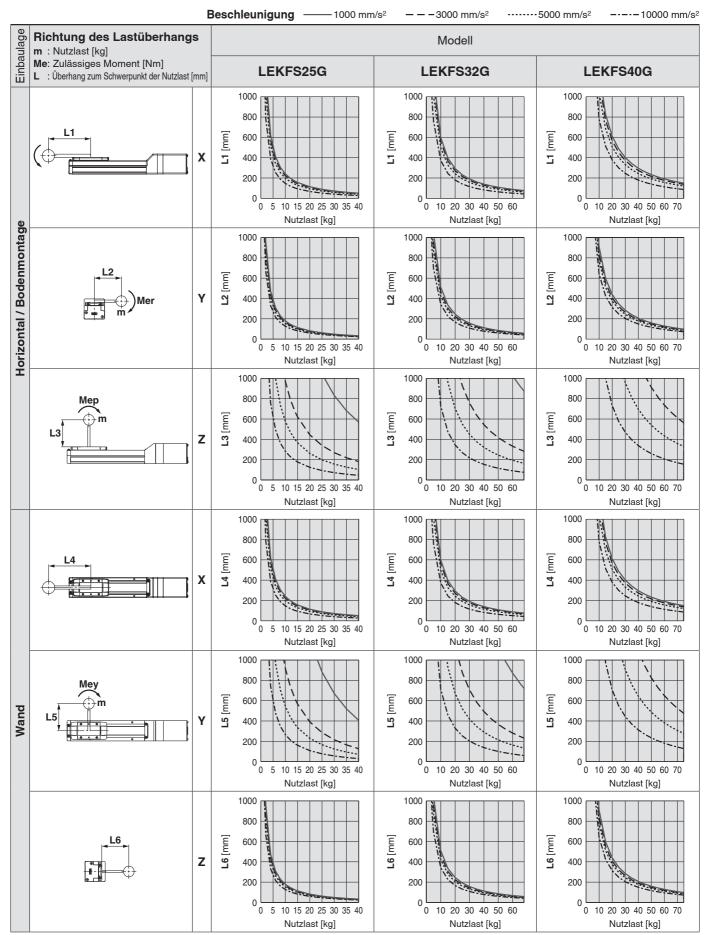
Horizontal/Spindelsteigung 10

Vertikal/Spindelsteigung 10

Betriebstemperatur: Verwenden Sie Produkte mit einer Einschaltdauer von 100 % oder weniger, wenn die Temperatur unter 30 °C liegt, und mit einer Einschaltdauer von 35 % oder weniger, wenn die Temperatur über 30 °C liegt.

Zulässiges statisches Moment*1

Modell	LEKFS25	LEKFS32	LEKFS40
Längsbelastung [Nm]	61	141	264
Querbelastung [Nm]	70	141	264
Seitenbelastung [Nm]	115	290	473


^{*1} Das zulässige statische Moment ist der Wert des statischen Moments, das auf den Antrieb einwirken kann, wenn er angehalten wird. Wenn das Produkt Stößen oder wiederholten Lasten ausgesetzt wird, müssen Sie bei der Verwendung des Produkts angemessene Sicherheitsmaßnahmen ergreifen.

Zulässiges dynamisches Moment

 Diese Diagramme zeigen den zulässigen Überhang, wenn der Lastschwerpunkt des Werkstücks einen Überhang in eine Richtung aufweist

Zulässiges dynamisches Moment

 Diese Diagramme zeigen den zulässigen Überhang, wenn der Lastschwerpunkt des Werkstücks einen Überhang in eine Richtung aufweist

Modellauswahl Serie

High Performance

Schrittmotor 24 VDC, ba

			Beschleuni	gung 1000 mm/s ²	-3000 mm/s ² 5000 mm/s ²	
ulage	Richtung des Lastüberhangs m: Nutzlast [kg] Me: Zulässiges Moment [Nm] L: Überhang zum Schwerpunkt der Nutzlast [mm]		Modell			
Einba			LEKFS25G	LEKFS32G	LEKFS40G	
Vertikal	m Mey	Y	1000 800 400 200 0 5 10 15 Nutzlast [kg]	1000 800 600 200 0 5 10 15 18 Nutzlast [kg]	1000 800 400 200 0 5 10 15 20 25 Nutzlast [kg]	
Vert	m Mep	Z	1000 800 400 200 0 5 10 15 Nutzlast [kg]	1000 800 81 600 200 0 5 10 15 18 Nutzlast [kg]	1000 800 800 400 200 0 5 10 15 20 25 Nutzlast [kg]	

Berechnung des Belastungsgrads der Führung

1. Bestimmen Sie die Betriebsbedingungen.

Modell: LEKFS□G Größe: 25/32/40

Einbaurichtung: Horizontal/Decke/Wand/Vertikal

Beschleunigung [mm/s²]: **a** Nutzlast [kg]: **m**

Nutzlast-Mitte [mm]: Xc/Yc/Zc

- 2. Wählen Sie das Ziel-Diagramm unter Berücksichtigung des Modells, der Größe und Einbaulage aus.
- 3. Ermitteln Sie anhand der Beschleunigung und der Nutzlast den Überhang [mm]: Lx/Ly/Lz aus dem Diagramm.
- 4. Berechnen Sie den Lastfaktor für jede Richtung.

 α x = Xc/Lx, α y = Yc/Ly, α z = Zc/Lz

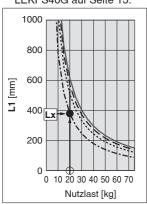
 Bestätigen Sie, dass der Gesamtwert von αx, αy, und αz 1 oder weniger beträgt. αx + αy + αz ≤ 1

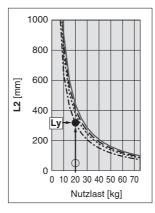
Wenn 1 überschritten wird, ziehen Sie bitte die Verringerung der Beschleunigung und Nutzlast in Betracht oder ändern Sie die Nutzlast-Mitte und die Serie.

Beispiel

 Betriebsbedingungen Modell: LEKFS40G

Größe: 40


Einbaulage: horizontal


Beschleunigung [mm/s²]: 10000

Nutzlast [kg]: 20

Mittelpunkt der Nutzlast [mm]: Xc = 0, Yc = 50, Zc = 200

Wählen Sie die Diagramme für die horizontale Lage des LEKFS40G auf Seite 15.

3. Lx = 380 mm, Ly = 320 mm, Lz = 740 mm

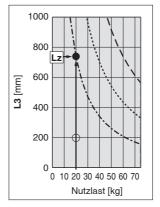
1. Horizontal

2. Deckenmontage

4. Der Lastfaktor für die einzelnen Richtungen wird wie folgt ermittelt.

Einbaulage

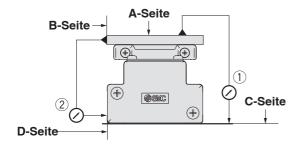
3. Wand

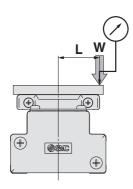

4. Vertikal

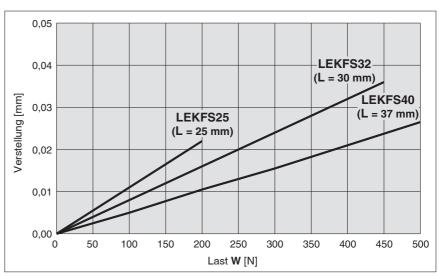
 $\alpha x = 0/380 = 0$

 α **y** = 50/320 = 0,156

 α z = 200/740 = 0,270


5. $\alpha x + \alpha y + \alpha z = 0.426 \le 1$


Schlittengenauigkeit (Referenzwert)



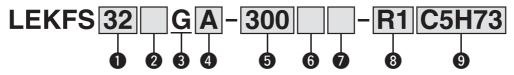
	Lineare Verfahrgenauigkeit [mm] (alle 300 mm)								
Modell	① C-Seite zur A-Seite	② D-Seite zur B-Seite							
LEKFS25	0,04	0,02							
LEKFS32	0,04	0,02							
LEKFS40	0,04	0,02							

^{*} Die Verfahrgenauigkeit berücksichtigt nicht die Genauigkeit der Montageoberfläche.

Schlittenabweichung (Referenzwert)

* Diese Abweichung wird gemessen, wenn eine 15-mm-Aluminiumplatte auf dem Schlitten montiert und befestigt wird.

Schrittmotor 24 VDC, batterieloser Absolut-Encoder


High Performance

Schlittenausführung mit hoher Steifigkeit und Präzision

Serie LEKFS G LEKFS25, 32, 40

Bestellschlüssel

Baugröße 2 Motoreinbaulage

25	— Gerade						
32	R	Rechts, paralle					
40	L	Links, parallel					
•							

3 Motorausführung

	High Performance
G	Batterieloser Absolut-Encoder
	(Schrittmotor 24 VDC)

4 Spindelsteigung [mm]

Symbol	LEKFS25	LEKFS32	LEKFS40
Н	20	24	30
Α	12	16	20
В	6	8	10

6 Hub*1

50	50
bis	bis
1200	1200

^{*} Einzelheiten entnehmen Sie aus der nachfolgenden Tabelle der kompatiblen Hübe.

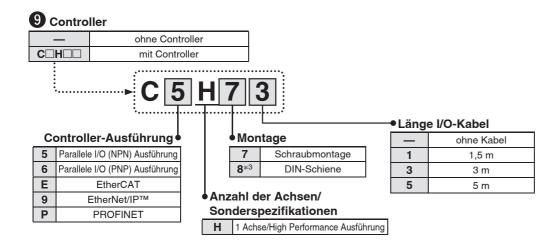
6 Motoroption

_	Ohne Option
В	mit Motorbremse

7 Fettauftrag (Dichtbandteil)

_	Mit
N	Ohne (Rollenspezifikation)

Anwendbare Hübe


7 11111011	andi o i i ano																
Größe									Hub								
Grobe	50	100	150	200	250	300	350	400	450	500	600	700	800	900	1000	1100	1200
25	•			•	•		•	•	•		•	•	•	_	_	_	_
32		•	•	•	•	•	•	•	•	•	•	•	•	•		_	_
40	_	_			•	•	•	•	•	•		•	•	•			•

8 Antriebskabellänge

Robotik	kabel		[m
_	Ohne	R8	8*2
R1	1,5	RA	10* ²
R3	3	RB	15* ²
R5	5	RC	20*2

- *1 Bitte setzen Sie sich für Hübe, die nicht Standard sind, mit SMC in Verbindung, da diese als Sonderbestellung gefertigt werden.
- *2 Fertigung auf Bestellung
- *3 DIN-Schiene ist nicht inbegriffen. Bitte separat bestellen.

Achtung

[CE/UKCA-konforme Produkte]

Die EMV-Konformität wurde durch Kombination des elektrischen Antriebs der Serie LEF und des Controllers der Serie JXC getestet. Die EMV ist von der Konfiguration der Schalttafel des Kunden und von der Beeinflussung sonstiger elektrischer Geräte und Verdrahtung abhängig. Aus diesem Grund kann die Erfüllung der EMV-Richtlinie nicht für SMC-Bauteile zertifiziert werden, die unter realen Betriebsbedingungen in Kundensystemen integriert sind. Daher muss der Kunde die Erfüllung der EMV-Richtlinie für das Gesamtsystem bestehend aus allen Maschinen und Anlagen überprüfen.

■ Markenzeichen

EtherNet/IP® ist ein registriert Warenzeichen von ODVA, Inc. EtherCAT® ist eine registrierte Handelsmarke und patentierte Technologie, unter Lizenz der Beckhoff Automation GmbH, Deutschland.

Siehe Betriebsanleitung für die Verwendung der Produkte. Diese können Sie von unserer Webseite: http://www.smc.eu herunterladen.

Ausführung	Schrittdateneingabe	EtherCAT Feldbus-kompatibles Netzwerk	EtherNet/IP™ Direkteingangstyp	PROFINET Direkteingangstyp
Serie	JXC5H JXC6H	JXCEH	JXC9H	ЈХСРН
Merkmale	Parallel-I/O	EtherCAT Direkteingang	EtherNet/IP™ Direkteingang	PROFINET Direkteingang
kompatibler Motor		Schrittmot	or 24 VDC	
Max. Anzahl der Schrittdaten		64 Pt	unkte	
Nennspannung [V]		24 \	/DC	
Details auf Seite	31	·-	38	·-

Schlittenausführung mit hoher Steifigkeit und Präzision Serie LEKFS G Schrittmotor 24 VDC, batterieloser Absolut-Encoder

Technische Daten

Modell					LEKFS25			LEKFS32		LEKFS40				
	Hub [mm	n]			50 bis 800			50 bis 1000			150 bis 1200			
	Nutzlast	[[cal*2	Horizontal	15	28	40	40	50	68	26	60	75		
	Nutziasi	[Kg]**-	Vertikal	3	7,5	15	4	10	18	4,5	4,5	25		
			Bis 400	20 bis 1500	12 bis 900	6 bis 500	24 bis 1300	16 bis 1000	8 bis 500	30 bis 1200	20 bis 1000	10 bis 500		
			401 bis 500	20 bis 1100	12 bis 750	6 bis 400	24 bis 1300	16 bis 950	8 bis 500	30 bis 1200	20 bis 1000	10 bis 500		
			501 bis 600	20 bis 900	20 bis 540	20 bis 270	24 bis 1200	16 bis 800	8 bis 400	30 bis 1200	20 bis 1000	10 bis 500		
sq	Geschwin-		601 bis 700	20 bis 630	20 bis 420	20 bis 230	24 bis 930	16 bis 620	8 bis 310	30 bis 1200	20 bis 900	10 bis 440		
trie	digkeit	Hubbereich	701 bis 800	20 bis 550	20 bis 330	20 bis 180	24 bis 750	16 bis 500	8 bis 250	30 bis 1140	20 bis 760	10 bis 350		
An	[mm/s]		801 bis 900	_	_	_	24 bis 610	16 bis 410	8 bis 200	30 bis 930	20 bis 620	10 bis 280		
Technische Daten des Antriebs			901 bis 1000	_	_	1	24 bis 500	16 bis 340	8 bis 170	30 bis 780	20 bis 520	10 bis 250		
eu (1001 bis 1100	_	_	_	_	_	_	30 bis 660	20 bis 440	10 bis 220		
Dat			1101 bis 1200	_	_	_	_	_	_	30 bis 570	20 bis 380	10 bis 190		
hel		hleunigung/	Horizontal					10000						
isc	Verzögeru	ıng [mm/s²]	Vertikal	5000										
동	Positionie	rwiederholger	nauigkeit [mm]	±0,01 (Steigung H: ±0,02)										
ě	Umkehrs	piel [mm]*3		max. 0,05										
		teigung [mn	-	20	12	6	24	16	8	30	20	10		
	Stoß-/Vib	rationsfesti	gkeit [m/s²]*4	50/20										
	Funktion	sweise		Kugelumlaufspindel (LEKFS□), Kugelumlaufspindel + Riemen (LEKFS□ ^R _L)										
	Führung	sart		Linearführung										
	Betriebst	temperaturb	ereich [°C]	5 bis 40										
	Luftfeucl	ntigkeitsber	eich [%RH]				max. 90	(keine Konde	nsation)					
e Jen	Motorgrö	iße			□42					6,4				
Elektrische bezifikatione	Motoraus	sführung				Schrittr	motor 24 VD	C, batterielos	er Absolut-E	ncoder				
i tri	Encoder						Batteriel	oser Absolut-	Encoder					
Elel Spezi		nnung [V]					2	4 VDC ±10 %	0					
S			hme [W]* ⁵ * ⁷	Ma	x. Leistung 1	26	Ma	x. Leistung 2	22	Ma	x. Leistung 2	22		
Technische Daten Motorbremse	Ausführu							gsfreie Funkti						
che L brem	Haltekrat			47	78	157	72	108	216	75	113	245		
hnis	Leistung				5			5			5			
Jec	Nennspa	nnung [V]					2	4 VDC ±10 %	0					

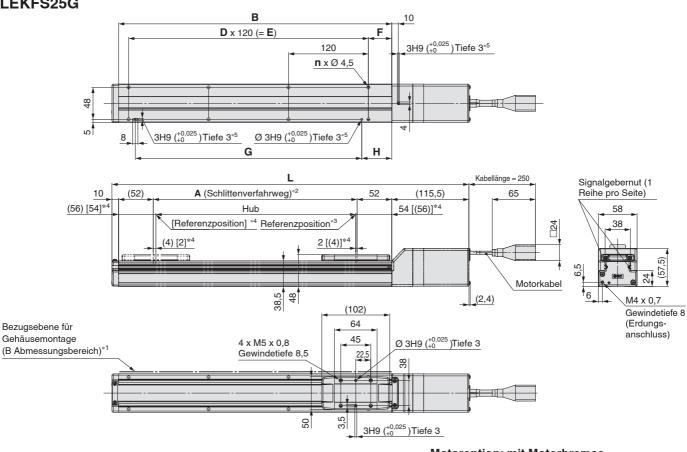
- *1 Bitte setzen Sie sich für Hübe, die nicht Standard sind, mit SMC in Verbindung, da diese als Sonderbestellung gefertigt werden.
- *2 Die max. Nutzlast bei 3000 mm/s² Beschleunigung und Verzögerung
 Die Nutzlast ist abhängig von der Beschleunigung und der Verzögerung. Beachten Sie das "Geschwindigkeits-/Nutzlastdiagramm" auf den Seiten 12 bis 14.
 Wenn die Kabellänge mehr als 5 m beträgt, kann sich außerdem die im "Geschwindigkeits-/Nutzlast-Diagramm" angegebene Geschwindigkeit und
 Nutzlast um bis zu 10 % je 5 m Längenzunahme verringern.
- *3 Richtwert zur Korrektur eines im Umkehrbetrieb entstandenen Fehlers
- *4 Stoßfestigkeit: Beim Testen des Antriebs mittels Fallversuch in axiale Richtung und senkrechte Richtung zur Gewindespindel ist keine Fehlfunktion aufgetreten. (Der Versuch erfolgte mit dem Antrieb in Startphase.)

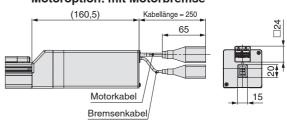
 Vibrationsfestigkeit: Keine Fehlfunktion im versuch von 45 bis 2000 Hz. Der Fallversuch wurde sowohl in axialer als auch in vertikaler Richtung zur Gewindespindel durchgeführt. (Der Versuch erfolgte mit dem Antrieb in Startphase.)
- *5 Die max. Leistungsaufnahme (einschließlich Controller) gilt, wenn der Antrieb in Betrieb ist. Dieser Wert kann für die Wahl der Spannungsversorgung verwendet werden.
- *6 Nur mit Motorbremse
- *7 Für einen Antrieb mit Motorbremse muss die Leistungsaufnahme für die Motorbremse hinzugerechnet werden.

Gewicht

Serie		LEKFS25											
Hub [mm]	50	100	150	200	250	300	350	400	450	500	600	700	800
Masse [kg]	1,7	1,8	2.0	2,1	2,3	2,4	2,5	2,6	2,8	2,9	3,2	3,5	3,8
Zusätzliches Gewicht mit Motorbremse [kg]	0,26												

Serie		LEKFS32													
Hub [mm]	50	100	150	200	250	300	350	400	450	500	600	700	800	900	1000
Masse [kg]	3,2	3,4	3,6	3,8	4,1	4.3	4,5	4,7	4,9	5,1	5,5	5,9	6,3	6,7	7,1
Zusätzliches Gewicht mit Motorbremse [kg]								0.53							

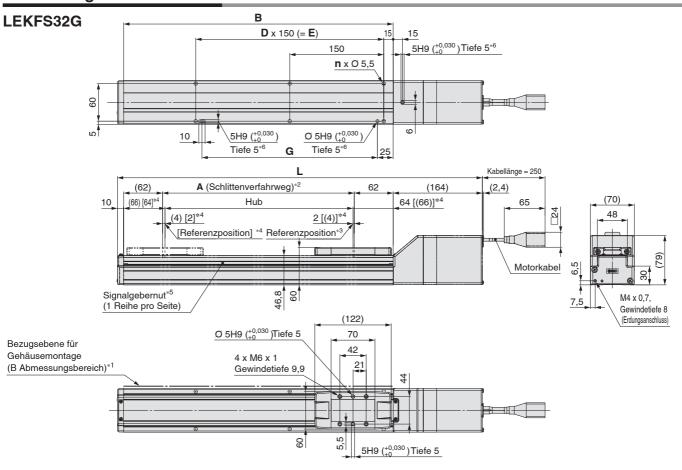

Serie		LEKFS40													
Hub [mm]	150	200	250	300	350	400	450	500	600	700	800	900	1000	1100	1200
Masse [kg]	5,5	5,8	6,1	6,4	6,7	7.0	7,3	7,6	8,2	8,8	9,4	10.0	10,6	11,2	11,8
Zusätzliches Gewicht mit Motorbremse [kg]								0,53							


High Performance Serie LEKFS G

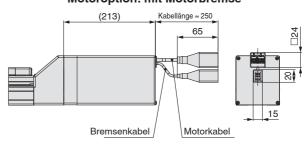
Abmessungen: axialer Motor

LEKFS25G

Motoroption: mit Motorbremse



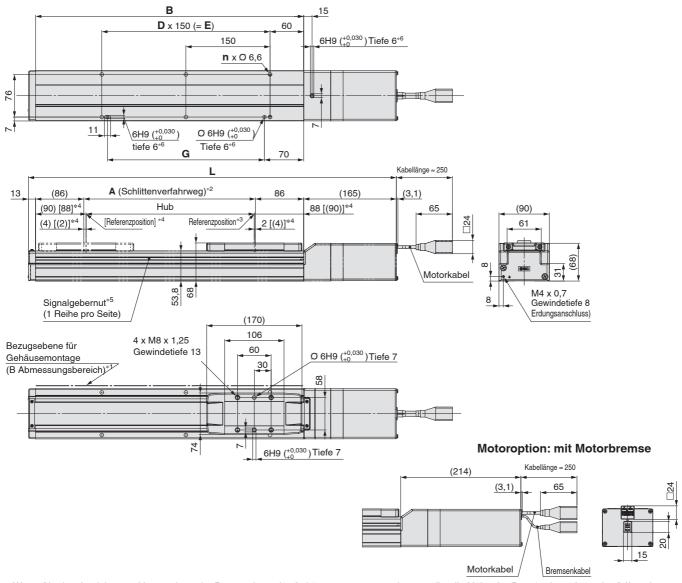
- *1 Wenn Sie den Antrieb unter Verwendung der Bezugsebene für Gehäusemontage montieren, sollte die Höhe der Bezugsebene bzw. der Stifte min. 3mm sein. (Empfohlene Länge: 5 mm)
 - Beachten Sie zudem, dass andere Flächen als die Gehäusemontage-Bezugsebene (Abmessungsbereich B) leicht aus der Gehäusemontage-Bezugsebene überstehen können. Achten Sie darauf, einen Spalt von 1 mm oder mehr vorzusehen, um Berührungen mit Werkstücken, der Ausrüstung usw. zu vermeiden.
- *2 Abstand, innerhalb dessen der Schlitten sich bewegen kann, wenn dieser zurück zur Referenzposition verfährt. Stellen Sie sicher, dass am Schlitten angebrachte Werkstücke nicht die Werkstücke und Anlagenteile im Umfeld des Schlittens behindert.
- *3 Position nach der Rückkehr zur Referenzposition
- *4 Der Wert in [] zeigt an, wenn die Referenzierrichtung geändert wurde
- *5 Wenn Sie die Positionierstiftbohrungen auf der Unterseite nutzen, verwenden Sie entweder die gehäuse- oder die aufnahmeseitige Bohrung.


Abmessungen										[mm]
Modell	Ohne Motorbremse	mit Motorbremse	Α	В	n	D	E	F	G	Н
LEKFS25G□-50□	285,5	330,5	56	160				20		30
LEKFS25G□-100□	335,5	380,5	106	210	4	_	—		100	
LEKFS25G□-150□	385,5	430,5	156	260						
LEKFS25G□-200□	435,5	480,5	206	310	6	2	240		220	
LEKFS25G□-250□	485,5	530,5	256	360	O	2	240		220	
LEKFS25G□-300□	535,5	580,5	306	410						
LEKFS25G□-350□	585,5	630,5	356	460	8	3	360	35	340	45
LEKFS25G□-400□	635,5	680,5	406	510				33		45
LEKFS25G□-450□	685,5	730,5	456	560	10	4	480		460	
LEKFS25G□-500□	735,5	780,5	506	610	10	4	400		400	
LEKFS25G□-600□	835,5	880,5	606	710	12	5	600		580	
LEKFS25G□-700□	935,5	980,5	706	810	14	6	720		700	
LEKFS25G□-800□	1035,5	1080,5	806	910	16	7	840		820	

Abmessungen: axialer Motor

Motoroption: mit Motorbremse

- *1 Wenn Sie den Antrieb unter Verwendung der Bezugsebene für Gehäusemontage montieren, sollte die Höhe der Bezugsebene bzw. der Stifte min. 3mm sein. (Empfohlene Länge: 5 mm)
 Beachten Sie zudem, dass andere Flächen als die Gehäusemontage-Bezugsebene (Abmessungsbereich B) leicht aus der Gehäusemontage-Bezugsebene überstehen können. Achten
 Sie darauf, einen Spalt von 1 mm oder mehr vorzusehen, um Berührungen mit Werkstücken, der Ausrüstung usw. zu vermeiden.
- *2 Abstand, innerhalb dessen der Schlitten sich bewegen kann, wenn dieser zurück zur Referenzposition verfährt. Stellen Sie sicher, dass am Schlitten angebrachte Werkstücke nicht die Werkstücke und Anlagenteile im Umfeld des Schlittens behindert.
- *3 Position nach der Rückkehr zur Referenzposition
- *4 Der Wert in [] zeigt an, wenn die Referenzierrichtung geändert wurde
- *5 Zur Befestigung von Signalgebern ist ein Distanzstück (BMY3-016) erforderlich. Bitte separat bestellen.
- *6 Wenn Sie die Positionierstiftbohrungen auf der Unterseite nutzen, verwenden Sie entweder die gehäuse- oder die aufnahmeseitige Bohrung.

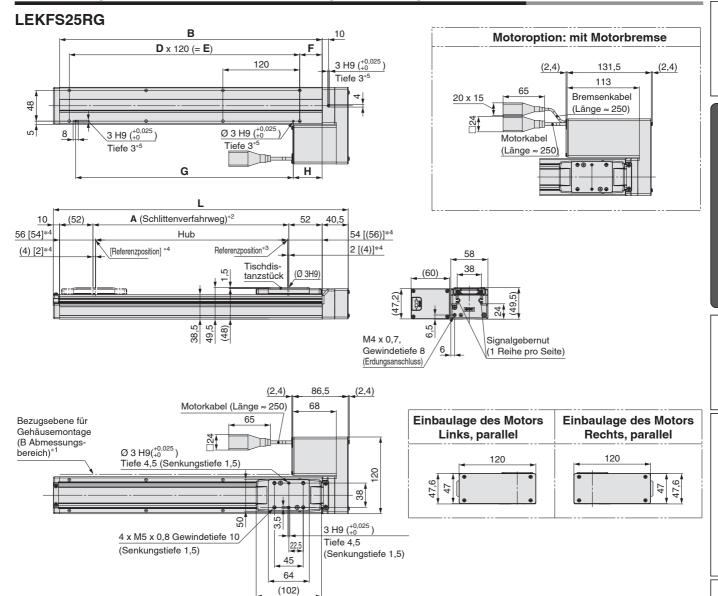

Abmessungen [mm]										
	l	<u>_</u>				_	_			
Modell	Ohne Motorbremse	mit Motorbremse	A	В	n	D	E	G		
LEKFS32G□-50□	332	384	56	180						
LEKFS32G□-100□	382	434	106	230	4	_	_	130		
LEKFS32G□-150□	432	484	156	280						
LEKFS32G□-200□	482	534	206	330						
LEKFS32G□-250□	532	584	256	380	6	2	300	280		
LEKFS32G□-300□	582	634	306	430						
LEKFS32G□-350□	632	684	356	480						
LEKFS32G□-400□	682	734	406	530	8	3	450	430		
LEKFS32G□-450□	732	784	456	580						
LEKFS32G□-500□	782	834	506	630	10	4	600	580		
LEKFS32G□-600□	882	934	606	730	10	4	000	360		
LEKFS32G□-700□	982	1034	706	830	12	5	750	730		
LEKFS32G□-800□	1082	1134	806	930	14	6	900	880		
LEKFS32G□-900□	1182	1234	906	1030	14	U	900	000		
LEKFS32G□-1000□	1282	1334	1006	1130	16	7	1050	1030		

Serie LEKFS G

Abmessungen: axialer Motor

LEKFS40G

- *1 Wenn Sie den Antrieb unter Verwendung der Bezugsebene für Gehäusemontage montieren, sollte die Höhe der Bezugsebene bzw. der Stifte min. 3mm sein. (Empfohlene Länge: 5 mm)
 Beachten Sie zudem, dass andere Flächen als die Gehäusemontage-Bezugsebene (Abmessungsbereich B) leicht aus der Gehäusemontage-Bezugsebene
- überstehen können. Achten Sie darauf, einen Spalt von 1 mm oder mehr vorzusehen, um Berührungen mit Werkstücken, der Ausrüstung usw. zu vermeiden. *2 Abstand, innerhalb dessen der Schlitten sich bewegen kann, wenn dieser zurück zur Referenzposition verfährt. Stellen Sie sicher, dass am Schlitten angebrachte Werkstücke nicht die Werkstücke und Anlagenteile im Umfeld des Schlittens behindert.
- *3 Position nach der Rückkehr zur Referenzposition
- *4 Der Wert in [] zeigt an, wenn die Referenzierrichtung geändert wurde
- *5 Zur Befestigung von Signalgebern ist ein Distanzstück (BMY3-016) erforderlich. Bitte separat bestellen.
- *6 Wenn Sie die Positionierstiftbohrungen auf der Unterseite nutzen, verwenden Sie entweder die gehäuse- oder die aufnahmeseitige Bohrung.


Abmessungen

							[mm]
L	L						
Ohne	mit	Α	В	n	D	E	G
Motorbremse	Motorbremse						
506	555	156	328	4	_	_	130
556	605	206	378				
606	655	256	428	6	2	300	280
656	705	306	478				
706	755	356	528				
756	805	406	578	8	3	450	430
806	855	456	628				
856	905	506	678	10	4	600	580
956	1005	606	778	10	4	600	360
1056	1105	706	878	12	5	750	730
1156	1205	806	978	1.4	6	000	880
1256	1305	906	1078	14	0	900	000
1356	1405	1006	1178	16	7	1050	1030
1456	1505	1106	1278	10	o	1200	1180
1556	1605	1206	1378	10	0	1200	1100
	Motorbremse 506 556 606 656 706 756 806 856 956 1056 1156 1256 1356 1456	Motorbremse Motorbremse 506 555 556 605 606 655 656 705 706 755 756 805 806 855 856 905 956 1005 1056 1105 1156 1205 1256 1305 1356 1405 1456 1505	Motorbremse Motorbremse 506 555 156 556 605 206 606 655 256 656 705 306 706 755 356 756 805 406 806 855 456 856 905 506 956 1005 606 1056 1105 706 1156 1205 806 1256 1305 906 1356 1405 1006 1456 1505 1106	Motorbremse Motorbremse 506 555 156 328 556 605 206 378 606 655 256 428 656 705 306 478 706 755 356 528 756 805 406 578 806 855 456 628 856 905 506 678 956 1005 606 778 1056 1105 706 878 1156 1205 806 978 1256 1305 906 1078 1356 1405 1006 1178 1456 1505 1106 1278	Motorbremse Motorbremse 506 555 156 328 4 556 605 206 378 6 606 655 256 428 6 6 656 705 306 478 706 755 356 528 756 805 406 578 8 8 8 8 8 8 6 628 8 8 6 678 956 100 606 778 10	Motorbremse Motorbremse Motorbremse 506 555 156 328 4 — 556 605 206 378 6 6 656 256 428 6 2 656 705 306 478 7 356 528 3 756 805 406 578 8 3 3 806 855 456 628 8 3 8 <th>Motorbremse Motorbremse Motorbremse</th>	Motorbremse Motorbremse

Schlittenausführung mit hoher Steifigkeit und Präzision Serie LEKFS G Schrittmotor 24 VDC, batterieloser Absolut-Encoder

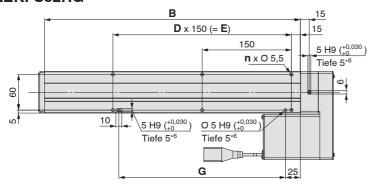
Abmessungen: Parallele Motorausführung für Montage rechts/links

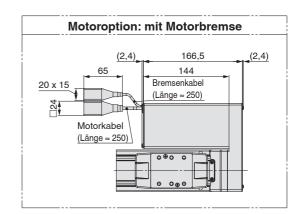
- *1 Wenn Sie den Antrieb unter Verwendung der Bezugsebene für Gehäusemontage montieren, sollte die Höhe der Bezugsebene bzw. der Stifte min. 3mm sein. (Empfohlene Länge: 5 mm)

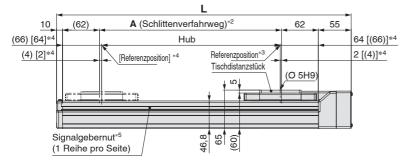
 Beachten Sie zudem, dass andere Flächen als die Gehäusemontage-Bezugsebene (Abmessungsbereich B) leicht aus der Gehäusemontage-Bezugsebene
- überstehen können. Achten Sie darauf, einen Spalt von 1 mm oder mehr vorzusehen, um Berührungen mit Werkstücken, der Ausrüstung usw. zu vermeiden.

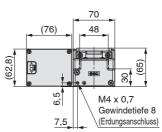
 *2 Abstand, innerhalb dessen der Schlitten sich bewegen kann, wenn dieser zurück zur Referenzposition verfährt. Stellen Sie sicher, dass am Schlitten angebrachte Werkstücke nicht die Werkstücke und Anlagenteile im Umfeld des Schlittens behindert.
- *3 Position nach der Rückkehr zur Referenzposition
- *4 Der Wert in [] zeigt an, wenn die Referenzierrichtung geändert wurde
- *5 Wenn Sie die Positionierstiftbohrungen auf der Unterseite nutzen, verwenden Sie entweder die gehäuse- oder die aufnahmeseitige Bohrung.
- * Diese Abbildung zeigt die Einbaulage der rechtseitigen parallelen Motorausführung.

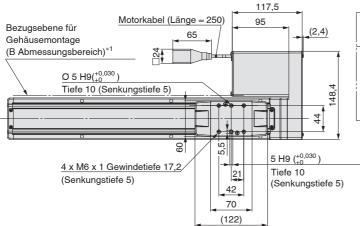
A	b	m	es	S	u	n	a	е	n

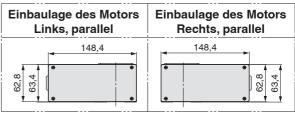

n	٦I	m


Modell	L	Α	В	n	D	Е	F	G	Н	
LEKFS25□G□-50□	210,5	56	160				20		30	
LEKFS25□G□-100□	260,5	106	210	4	_	_		100		
LEKFS25□G□-150□	310,5	156	260							
LEKFS25□G□-200□	360,5	206	310	6	2	240		220		
LEKFS25□G□-250□	410,5	256	360	0		240		220		
LEKFS25□G□-300□	460,5	306	410							
LEKFS25□G□-350□	510,5	356	460	8	3	360	35	340	45	
LEKFS25□G□-400□	560,5	406	510				35	33		45
LEKFS25□G□-450□	610,5	456	560	10	4	480		460		
LEKFS25□G□-500□	660,5	506	610	10	4	400		400		
LEKFS25□G□-600□	760,5	606	710	12	5	600		580		
LEKFS25□G□-700□	860,5	706	810	14	6	720		700		
LEKFS25□G□-800□	960,5	806	910	16	7	840		820		

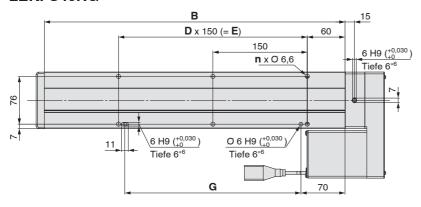


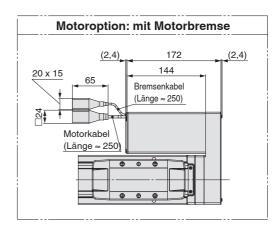

Abmessungen: Parallele Motorausführung für Montage rechts/links

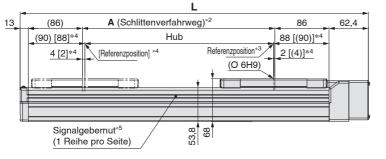

LEKFS32RG

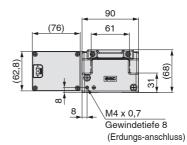


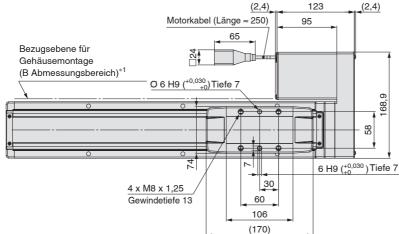
- *1 Wenn Sie den Antrieb unter Verwendung der Bezugsebene für Gehäusemontage montieren, sollte die Höhe der Bezugsebene bzw. der Stifte min. 3mm sein. (Empfohlene Länge: 5 mm)
 - Beachten Sie zudem, dass andere Flächen als die Gehäusemontage-Bezugsebene (Abmessungsbereich B) leicht aus der Gehäusemontage-Bezugsebene überstehen können. Achten Sie darauf, einen Spalt von 1 mm oder mehr vorzusehen, um Berührungen mit Werkstücken, der Ausrüstung usw. zu vermeiden.
- *2 Abstand, innerhalb dessen der Schlitten sich bewegen kann, wenn dieser zurück zur Referenzposition verfährt. Stellen Sie sicher, dass am Schlitten angebrachte Werkstücke nicht die Werkstücke und Anlagenteile im Umfeld des Schlittens behindert.
- *3 Position nach der Rückkehr zur Referenzposition
- *4 Der Wert in [] zeigt an, wenn die Referenzierrichtung geändert wurde
- *5 Zur Befestigung von Signalgebern ist ein Distanzstück (BMY3-016) erforderlich. Bitte separat bestellen.
- *6 Wenn Sie die Positionierstiftbohrungen auf der Unterseite nutzen, verwenden Sie entweder die gehäuse- oder die aufnahmeseitige Bohrung.
- Diese Abbildung zeigt die Einbaulage der rechtseitigen parallelen Motorausführung.

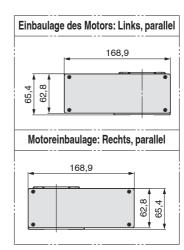

Abmessungen							[mm]
Modell	L	Α	В	n	D	E	G
LEKFS32□G□-50□	245	56	180				
LEKFS32□G□-100□	295	106	230	4	-	—	130
LEKFS32□G□-150□	345	156	280				
LEKFS32□G□-200□	395	206	330				
LEKFS32□G□-250□	445	256	380	6	2	300	280
LEKFS32□G□-300□	495	306	430				
LEKFS32□G□-350□	545	356	480				
LEKFS32□G□-400□	595	406	530	8	3	450	430
LEKFS32□G□-450□	645	456	580				
LEKFS32□G□-500□	695	506	630	10	4	600	580
LEKFS32□G□-600□	795	606	730	10	4	000	360
LEKFS32□G□-700□	895	706	830	12	5	750	730
LEKFS32□G□-800□	995	806	930	14	6	900	880
LEKFS32□G□-900□	1095	906	1030	14	٥	900	000
LEKFS32□G□-1000□	1195	1006	1130	16	7	1050	1030




High Performance Schlittenausführung mit hoher Steifigkeit und Präzision Serie LEKFS G Schrittmotor 24 VDC, batterieloser Absolut-Encoder


Abmessungen: Parallele Motorausführung für Montage rechts/links


LEKFS40RG



- *1 ~Wenn Sie den Antrieb unter Verwendung der Bezugsebene für Gehäusemontage montieren, sollte die Höhe der Bezugsebene bzw. der Stifte min. 3mm sein. (Empfohlene Länge: 5 mm)
 Beachten Sie zudem, dass andere Flächen als die Gehäusemontage-Bezugsebene (Abmessungsbereich B) leicht aus der Gehäusemontage-Bezugsebene überstehen können. Achten Sie
 darauf, einen Spalt von 1 mm oder mehr vorzusehen, um Berührungen mit Werkstücken, der Ausrüstung usw. zu vermeiden.
- *2 Abstand, innerhalb dessen der Schlitten sich bewegen kann, wenn dieser zurück zur Referenzposition verfährt. Stellen Sie sicher, dass am Schlitten angebrachte Werkstücke nicht die Werkstücke und Anlagenteile im Umfeld des Schlittens behindert.
- *3 Position nach der Rückkehr zur Referenzposition
- *4 Der Wert in [] zeigt an, wenn die Referenzierrichtung geändert wurde
- *5 Zur Befestigung von Signalgebern ist ein Distanzstück (BMY3-016) erforderlich. Bitte separat bestellen.
- *6 Wenn Sie die Positionierstiftbohrungen auf der Unterseite nutzen, verwenden Sie entweder die gehäuse- oder die aufnahmeseitige Bohrung.
- * Diese Abbildung zeigt die Einbaulage der rechtseitigen parallelen Motorausführung.

Abmessungen							[mm]
Modell	L	Α	В	n	D	Е	G
LEKFS40□G□-150□	403,4	156	328	4	_	150	130
LEKFS40□G□-200□	453,4	206	378				
LEKFS40□G□-400□	503,4	256	428	6	2	300	280
LEKFS40□G□-300□	553,4	306	478				
LEKFS40□G□-350□	603,4	356	528				
LEKFS40□G□-400□	653,4	406	578	8	3	450	430
LEKFS40□G□-450□	703,4	456	628				
LEKFS40□G□-500□	753,4	506	678	10	4	600	580
LEKFS40□G□-600□	853,4	606	778	10	4	000	360
LEKFS40□G□-700□	953,4	706	878	12	5	750	730
LEKFS40□G□-800□	1053,4	806	978	14	6	900	880
LEKFS40□G□-900□	1153,4	906	1078	14	0	900	000
LEKFS40□G□-1000□	1253,4	1006	1178	16	7	1050	1030
LEKFS40□G□-1100□	1353,4	1106	1278	18	8	1200	1180
LEKFS40□G□-1200□	1453,4	1206	1378	10	0	1200	1100

Serie LEKFS□G Signalgebermontage

Signalgeber-Einbaulage

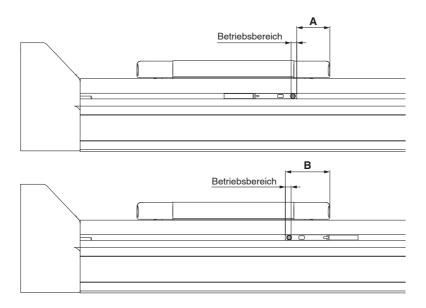
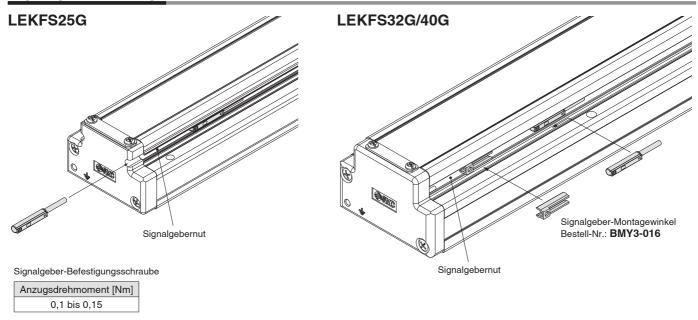



Tabelle 1 Signalgeber-Befestigungsdimensionen[mm]

Modell	Größe	Α	В	Betriebsbereich
	25	17,5	23,5	3,0
LEKFS□G	32	26,3	32,3	3,4
	40	32,2	38,2	3,6

- * Der verwendbare Signalgeber ist D-M9 (N/P/B) (W) (M/L/Z).
- * Beim Betriebsbereich handelt es sich um einen Richtwert einschließlich Hysterese, für den keine Gewährleistung übernommen wird. Je nach Einsatzumgebung können Abweichungen auftreten.
- Vor der endgültigen Einstellung des Signalgebers zunächst die Betriebsbedingungen prüfen.

Signalgebermontage

- * Der verwendbare Signalgeber ist D-M9 (N/P/B) (W) (M/L/Z).
- * Verwenden Sie zum Festziehen der Signalgeber-Befestigungsschraube (im Lieferumfang des Signalgebers enthalten) einen Feinschraubendreher mit einem Griffdurchmesser von 5 bis 6 mm.
- * Bereiten Sie ein einen Signalgeber-Montagewinkel (BMY3-016) vor, wenn Sie den Signalgeber an den LEKFS32G/40G montieren.

Elektronischer Signalgeber (Öffner) Direktmontageausführung D-M9NE(V)/D-M9PE(V)/D-M9BE(V) (€

eingegossenes Kabel

- Das Ausgangssignal ist eingeschaltet, wenn der Signalgeber nicht betätigt ist.
- Einsetzbar in allen Serie, in denen auch der D-M9 verwendbar ist.

△ Achtung

Sicherheitshinweise

Befestigen Sie den Signalgeber mit der am Gehäuse angebrachten Schraube. Wird eine andere als die mitgelieferte Schraube benutzt, kann der Signalgeber beschädigt werden.

Technische Daten Signalgeber

Weitere Details zu Produkten, die internationalen Standards entsprechen, finden Sie auf der Website von SMC.

SPS: Speicherprogrammierbare Steu-

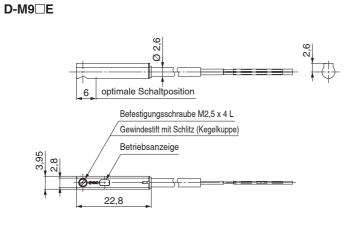
D-M9□E, D-M	9□EV (m	it Betrieb	sanzeige)					
Signalgebermodell	D-M9NE	D-M9NEV	D-M9PE	D-M9PEV	D-M9BE	D-M9BEV			
Abgang elektrischer Anschluss	axial	vertikal	axial	vertikal	axial vertikal				
Art der Verdrahtung		3-Draht-	System		2-D	raht			
Ausgangstyp	NF	NPN PNP —							
Anwendung	I	IC-Steuerung, Relais, SPS 24 VDC, Relais, SP							
Versorgungsspannung	5	, 12, 24 VDC	/)	-	_				
Stromaufnahme		max.	10 mA		_				
Betriebsspannung	28 VDC oc	ler weniger	-	_	24 VDC (10 bis 28 VDC)				
Arbeitsstrom		max. 4	10 mA		2,5 bis 40 mA				
Interner Spannungsabfall	0,8 V c	der weniger bei 10) mA (max. 2 V be	i 40 mA)	4 V oder weniger				
Kriechstrom	100	μA oder wer	/DC	0,8 mA oder weniger					
Betriebsanzeige	EIN: rote LED leuchtet.								
Standard	•	CE-Kennzeichnung, RoHS							

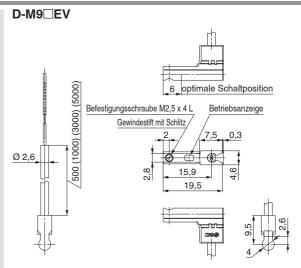
Technische Daten des flexiblen ölbeständigen Anschlusskabels

Signalge	bermodell	D-M9NE(V)	D-M9PE(V)	D-M9BE(V)			
Mantel	Außen-Ø [mm]	2,6					
Isolator	Anzahl Trägerkörper	3-Draht (Braun	2-Draht (Braun/Blau)				
isolator	Außen-Ø [mm]	0,88					
Leiter	Effektiver Querschnitt [mm²]		0,15				
Leiter	Litzen-Durchmesser [mm]	0,05					
Min. Biegeradius	[mm] (Richtwerte)		17				

- * Weitere Einzelheiten zu den gemeinsamen Spezifikationen des elektronischen Signalgebers finden Sie im WEB-Katalog.
- Weitere Einzelheiten zur Anschlusskabellänge finden Sie im WEB-Katalog.

Gewicht


icht [9]


Signalgel	permodell	D-M9NE(V)	D-M9PE(V)	D-M9BE(V)		
	0,5 m ()	8	3	7		
Anschlusskabellänge	1 m (M)*1	1	13			
Anschlusskabellange	3 m (L)	4	1	38		
	5 m (Z)*1	6	63			

*1 Die Optionen 1 m und 5 m werden bei Eingang der Bestellung produziert.

Abmessungen

[mm]

Elektronischer Signalgeber mit 2-farbiger Anzeige Direktmontageausführung

D-M9NW/D-M9PW/D-M9BW

[g]

Eingegossenes Kabel

- 2-Draht-Ausführung mit reduziertem max. Strom (2,5 bis 40 mA).
- Standardmäßig werden flexible Kabel verwendet.
- Die optimale Schaltposition kann anhand der Farbe der leuchtenden LED bestimmt werden.
 (Rot → Grün ← Rot)

△ Achtung

Sicherheitshinweise

Befestigen Sie den Signalgeber mit der am Gehäuse angebrachten Schraube. Wird eine andere als die mitgelieferte Schraube benutzt, kann der Signalgeber beschädigt werden.

Technische Daten Signalgeber

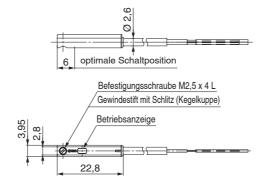
Weitere Details zu Produkten, die internationalen Standards entsprechen, finden Sie auf der Website von SMC.

SPS: Speicherprogrammierbare Steuerung

D-M9□W, D-M9□WV (mit Betriebsanzeige)								
Signalgebermodell	D-M9NW	D-M9BW						
Abgang elektrischer Anschluss								
Art der Verdrahtung	3-Draht	2-Draht						
Ausgangstyp	NPN	NPN PNP						
Anwendung	IC-Steuerung	24 VDC, Relais, SPS						
Versorgungsspannung	5, 12, 24 VDC	_						
Stromaufnahme	max.	_						
Betriebsspannung	28 VDC oder weniger	24 VDC (10 bis 28 VDC)						
Arbeitsstrom	max.	40 mA	2,5 bis 40 mA					
Interner Spannungsabfall	0,8 V oder weniger bei 10) mA (max. 2 V bei 40 mA)	4 V oder weniger					
Kriechstrom	100 μA oder wer	0,8 mA oder weniger						
Betriebsanzeige		ch ······· Rote LED leucht etriebsbereich ······ Grür	·= ··					
Standard	(CE-Kennzeichnung, RoH	3					

Technische Daten des flexiblen ölbeständigen Anschlusskabels

Signalge	bermodell	D-M9NW	D-M9PW D-M9PW					
Mantel	Außen-Ø [mm]							
Isolator	Anzahl Trägerkörper	/Blau/Schwarz)	2-Draht (Braun/Blau)					
Isolator	Außen-Ø [mm]							
Leiter	Effektiver Querschnitt [mm²]		0,15					
Leiter	Litzen-Durchmesser [mm]		0,05					
Min. Biegeradius	[mm] (Richtwerte)		17					


- * Weitere Einzelheiten zu den gemeinsamen Spezifikationen des elektronischen Signalgebers finden Sie im **WEB-Katalog**.
- * Weitere Einzelheiten zur Anschlusskabellänge finden Sie im WEB-Katalog

Gewicht

Signalgel	oermodell	modell D-M9NW D-M9PW				
	0,5 m ()		8	7		
Anschlusska-	1 m (M)	1	13			
bellänge	3 m (L)	2	1 1	38		
	5 m (Z)	6	88	63		

Abmessungen [mm]

D-M9□W

Serie LEKFS

Typenauswahl

Controller Serie JXC

Schrittdaten-Eingabe

High Performance

Schrittmotor 24 VDC, batterieloser Absolut-Encoder

Serie JXC5H/6H

EtherCAT/EtherNet/IP™/Direkteingangstyp

High Performance

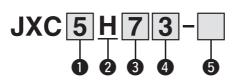
Schrittmotor 24 VDC, batterieloser Absolut-End

Serie JXCEH/9H/PH

Ether CAT.

EtherNet/IP

PROF! NET



Antriebskabel S. 43

Schrittmotor-Controller High Performance (Ausführung Schrittdaten-Eingabe) CE CH CHUS Serie JXC5H/6H

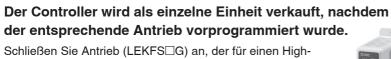
Bestellschlüssel

Parallele I/O (NPN) Ausführung Parallele I/O (PNP) Ausführung 2 Spezifikation

1 Achse/High Performance Ausführung Montage

7	Schraubmontage
8	DIN-Schiene

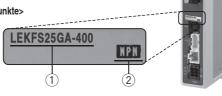
(RoHS)


4 länge I/O-Kabel

	Ohne
1	1,5 m
3	3 m
5	5 m

5 bestellnummer Antrieb

Ohne Kabelspezifikationen und Antriebsoptionen Beispiel: Geben Sie "LEKFS25GA-400" für die Ausführung LEKFS25GA-400B-R1C□H□□ ein Unbeschriebener Controller*1


*1 Erfordert spezielle Software (JXC-BCW)

Performance-Controller ausgelegt ist. Stellen Sie sicher, dass die Kombination aus Controller und Antrieb korrekt ist.

<Prüfen Sie vor der Verwendung folgende Punkte>

- (1) Überprüfen Sie die Modellnummer auf dem Typenschild des Antriebs, Diese Nummer muss mit der des Controllers übereinstimmen
- ② Überprüfen Sie, ob die I/O-Konfiguration übereinstimmt (NPN oder PNP).

Siehe Betriebsanleitung für die Verwendung der Produkte. Diese können Sie von unserer Webseite: http://www.smc.eu herunterladen

Technische Daten

Modell	JXC5H JXC6H
Kompatibler Motor	Schrittmotor (Servo/24 VDC)
Spannungsversorgung	Versorgungsspannung: 24 VDC ±10 %
Stromaufnahme (Controller)	max. 100 mA
Kompatibler Encoder	Batterieloser Absolut-Encoder
Paralleleingang	11 Eingänge (Optokoppler)
Parallelausgang	13 Ausgänge (Optokoppler)
Serielle Kommunikation	RS485 (nur für LEC-T1 und JXC-W2)
Datenspeicherung	EEPROM
Statusanzeige	PWR, ALM
Länge Antriebskabel [m]	Antriebskabel: max. 20
Kühlsystem	natürliche Luftkühlung
Betriebstemperaturbereich [°C]	0 bis 40
Luftfeuchtigkeitsbereich [%RH]	max. 90 (keine Kondensation)
Isolationswiderstand [M Ω]	Zwischen allen externen Klemmen und Gehäuse: 50 (500 VDC)
Gewicht [g]	180 (Schraubmontage), 200 (DIN-Schienenmontage)

Sicherheitshinweise für unbeschriebene Controller (JXC□1□□-BC)

Einen unbeschriebenen Controller kann der Kunde mit Daten des Antriebs beschreiben, mit dem er kombiniert und verwendet werden soll. Verwenden Sie zum Schreiben von Daten die Controller-Einstellungssoftware ACT Controller 2 oder die dedizierte Software JXC-**BCW**

- ACT Controller 2 und JXC-BCW stehen auf der SMC-Website zum Download bereit.
- Um diese Software zu verwenden, bestellen Sie das Kommunikationskabel für die Controller-Finstellung (JXC-W2A-C) und das USB-Kabel (LEC-W2-U) separat.

Systemyoraussetzungen Hardware

Oystelliv	oraussetzungen m	arawarc
	14" I @40	Windows®7
os	Windows [®] 10 (64 Bit)	Windows®8
	(O+ Dit)	Windows®10
Software	ACT Controller 2 (mit JXC-BCW-Funktion)	JXC-BCW

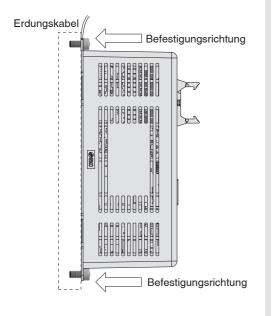
Windows®7, Windows®8, und Windows®10sind registrierte Handelsmarken der Microsoft Corporation in den USA.

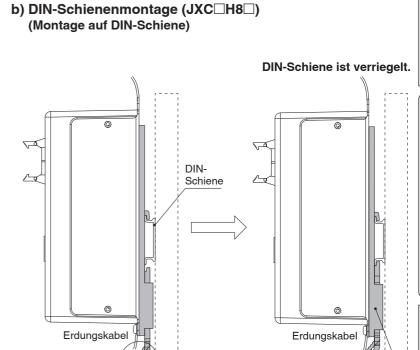
> **SMC-Website** https://www.smc.de

⚠ Achtung

[CE/UKCA-konforme Produkte]

Die Erfüllung der EMV-Richtlinie wurde geprüft, indem der elektrische Antrieb der Serie LE mit dem Modell der Serie JXC5H/6H kombiniert wurde. Die EMV ist von der Konfiguration der Schalttafel des Kunden und von der Beeinflussung sonstiger elektrischer Geräte und Verdrahtung abhängig. Aus diesem Grund kann die Erfüllung der EMV-Richtlinie nicht für SMC-Bauteile zertifiziert werden, die unter realen Betriebsbedingungen in Kundensystemen integriert sind. Daher muss der Kunde die Erfüllung der EMV-Richtlinie für das Gesamtsystem bestehend aus allen Maschinen und Anlagen überprüfen.

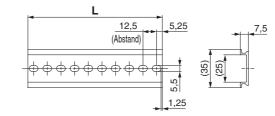



Typenauswahl

DIN-Schienen-Anbausatz

Montageanweisung

a) Schraubenmontage (JXC□H7□) (Montage mit zwei M4-Schrauben)



* Wird die Serie LE in der Baugröße 25 oder größer verwendet wird, muss der Abstand zwischen den Controllern mindestens 10 mm betragen.

Der Controller wird in die DIN_Schiene eingehängt und zur Verriegelung wird A in Pfeilrichtung geschoben.

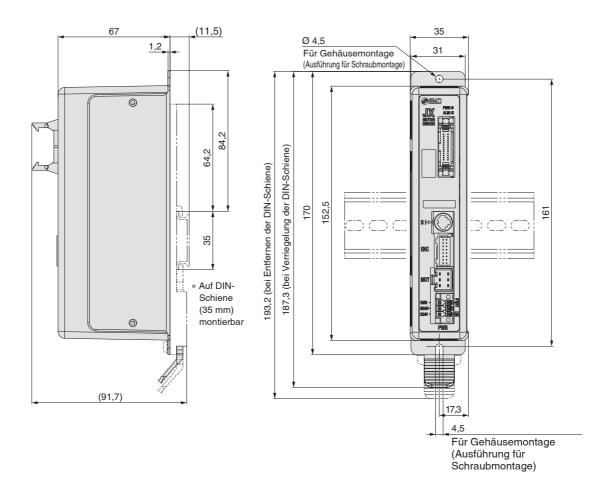
DIN-Schiene AXT100-DR-□

* Für , geben Sie eine Nummer aus Zeilen-Nr. der nachfolgenden Tabelle ein. Siehe Maßzeichnungen auf Seite 33 für Befestigungsdimensionen.

I Man C Front	٠.
L-Maß [mm	11

Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
L	23	35,5	48	60,5	73	85,5	98	110,5	123	135,5	148	160,5	173	185,5	198	210,5	223	235,5	248	260,5
Nr.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
										"	٠.	02		•		00	٠.			

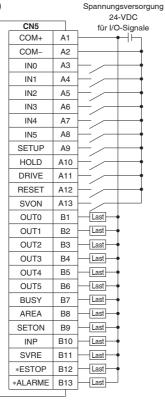
DIN-Schienen-Anbausatz


LEC-3-D0 (mit 2 Befestigungsschrauben)

Der DIN-Schienen-Anbausatz kann nachträglich bestellt und an den Controller mit Schraubmontage montiert werden.

Serie JXC5H/6H

Abmessungen



Spannungsversorgung

Verdrahtungsbeispiel 1

Verwenden Sie für den Anschluss einer SPS an den parallelen I/O-Stecker das I/O-Kabel (LEC-CN5-□). Paralleler I/O-Anschluss Die Verdrahtung ist je nach paralleler I/O-Ausführung unterschiedlich (NPN oder PNP).

Elektrisches Schaltschema JXC5H□□ (NPN)

Eingangssignal

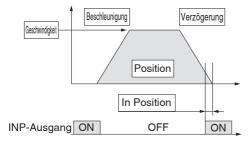
Bezeichnung	Details
COM+	Anschluss der 24 V-Spannungsversorgung für das Eingangs-/Ausgangssignal
COM-	Anschluss Masse für das Eingangs-/Ausgangssignal
IN0 bis IN5	Schrittdaten entsprechend Bit-Nummer. (Der Eingangsbefehl erfolgt in der Kombination von IN0 bis 5)
SETUP	Befehl für Rückkehr zur Ausgangsposition
HOLD	Der Betrieb wird vorübergehend angehalten
DRIVE	Befehl zum Verfahren
RESET	Zurücksetzen des Alarms und Unterbrechung des Betriebs
SVON	Befehl Servo ON

JXC6H□□ (PNP)

	_	24-VDC
CN5		für I/O-Signale
COM+	A1	
COM-	A2	.
IN0	А3	
IN1	A4	
IN2	A5	
IN3	A6	
IN4	A7	
IN5	A8	
SETUP	A9	
HOLD	A10	
DRIVE	A11	
RESET	A12	
SVON	A13	
OUT0	B1	Last
OUT1	B2	Last
OUT2	В3	Last
OUT3	B4	Last
OUT4	B5	Last
OUT5	B6	Last
BUSY	B7	Last
AREA	B8	Last
SETON	B9	Last
INP	B10	Last
SVRE	B11	Last
*ESTOP	B12	Last
*ALARME	B13	Last
		_

Ausgangssignal				
Details				
Ausgabe der Schrittdaten-Nummer während des Betriebs				
Ausgabe, wenn der Antrieb in Bewegung ist				
Ausgabe innnerhalb des Ausgabeeinstellbereichs der Schrittdaten				
Ausgabe bei Rückkehr zur Referenzposition				
Ausgabe bei Erreichen der Zielposition oder Zielkraft (Schaltet sich ein, wenn Positionierung oder Vorschub abgeschlossen sind.)				
Ausgabe, wenn Motor eingeschaltet ist				
keine Ausgabe bei EMG-Stopp-Befehl				
keine Ausgabe bei Alarm				

^{*1} Signal des negativ-logischen Schaltkreises (N.C.)

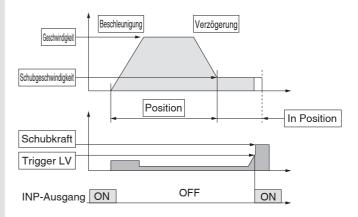

Schrittdaten-Einstellung

1. Schrittdaten-Einstellung für Positionierung

Mit dieser Einstellung bewegt sich der Antrieb in Richtung der Zielposition und stoppt dort.

Das nachfolgende Diagramm zeigt die Einstellparameter und den Betrieb.

Die Einstellparameter und Einstellwerte für diesen Betrieb sind unten angegeben.

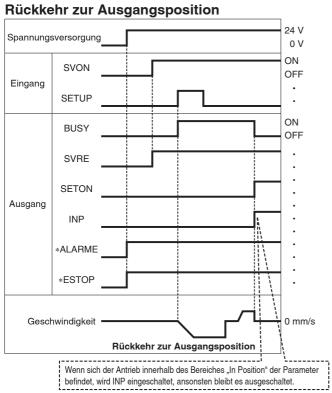

- ○: Muss eingestellt werden.
- : müssen den Anforderung entsprechend eingestellt werden: Einstellung ist nicht erforderlich

Schrittdaten (Positionierung)

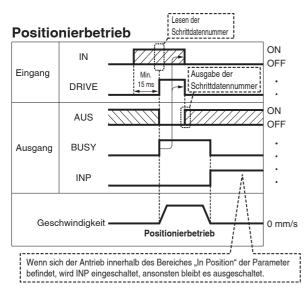
Notwen- digkeit	Element	Details	
0	Bewegungsart MOD	Ist eine absolute Position erforderlich, stellen Sie "Absolue" ein. Ist eine relative Position erforderlich, stellen sie "Relative" ein. Wenn die relative Positionierung erforderlich ist, auf Relativ setzen.	
0	Geschwindigkeit	Verfahrgeschwindigkeit zur Zielposition	
0	Position	Zielposition	
0	Beschleunigung	Beschleunigungsparameter, je höher der Einstellwert, desto schneller erreicht der Antrieb die eingestellte Geschwindigkeit. Je höher der Einstellwert, desto schneller erreicht er die eingestellte Geschwindigkeit.	
0	Verzögerung	Verzögerungsparameter, je höher der Einstellwert, desto schneller stoppt der Antrieb. Je höher der Einstellwert, desto schneller stoppt er.	
0	Schubkraft	Einstellwert 0 (Werden Werte von 1 bis 100 eingestellt, wechselt der Antrieb zu Schub-Betrieb.)	
_	Trigger LV	Einstellung nicht erforderlich.	
_	Schubgeschwindigkeit	Einstellung nicht erforderlich.	
0	Stellkraft	Max. Drehmoment während des Positionierbetriebs (keine besondere Änderung erforderlich.)	
0	Area 1, Area 2	Bedingung, die das AREA-Ausgangssignal (Bereich) einschaltet.	
0	In Position	Bedingung, die das INP-Ausgangssignal einschaltet. Sobald der Antrieb den [In Position]-bereich erreicht, schaltet sich das INP-Ausgangssignal ein. (Das Ändern des Nafangswertes ist hier nicht notwendig.) Wenn die Ausgabe des Ankunftssignals vor Abschluss des Betriebes erforderlich ist, erhöhen Sie den Wert.	

2. Schrittdaten-Einstellung für Schub

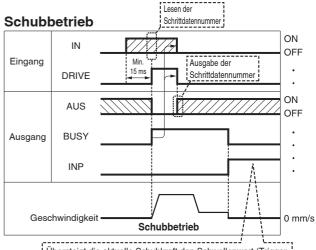
Der Antrieb bewegt sich in Richtung der Schub-Startposition. Wenn er diese Position erreicht hat, startet er den Schubbetrieb mit der Kraft, die unterhalb des Kraft-Einstellwertes liegt. oder weniger zu schieben. Das nachfolgende Diagramm zeigt die Einstellparameter und den Betrieb. Die Einstellparameter und Einstellwerte für diesen Betrieb sind unten angegeben.

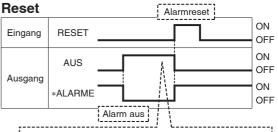

- ○: Muss eingestellt werden.
- : müssen den Anforderung entsprechend eingestellt werder

Schrittdaten (Schubbetrieb


Schr	schrittdaten (Schubbetrieb) entsprechend eingestellt v		
Notwen- digkeit	Element	Details	
0	Bewegungsart MOD	Ist eine absolute Position erforderlich, stellen Sie "Absolue" ein. Ist eine relative Position erforderlich, stellen sie "Relative" ein. Wenn die relative Positionierung erforderlich ist, auf Relativ setzen.	
0	Geschwindigkeit	Verfahrgeschwindigkeit zur Schub-Startposition	
0	Position	Schub-Startposition	
0	Beschleunigung	Beschleunigungsparameter, je höher der Einstellwert, desto schneller erreicht der Antrieb die eingestellte Geschwindigkeit. Je höher der Einstellwert, desto schneller erreicht er die eingestellte Geschwindigkeit.	
0	Verzögerung	Verzögerungsparameter, je höher der Einstellwert, desto schneller stoppt der Antrieb. Je höher der Einstellwert, desto schneller stoppt er.	
0	Schubkraft	Das Schubverhältnis wird definiert. Der Einstellbereich variiert je nach gewähltem elektrischen Antrieb. Siehe Betriebsanleitung des elektrischen Antriebs.	
0	Trigger LV	Bedingung, die das INP-Ausgangssignal einschaltet. Das INP-Ausgangssignal schaltet sich ein, wenn die erzeugte Kraft den Wert überschreitet. Der Schwellenwert darf max. dem Wert der Schubkraft entsprechen.	
0	Schubgeschwin- digkeit	Schubgeschwindigkeit Wird die Geschwindigkeit auf einen hoghen Wert eingestellt, kann es, aufgrund von Stoßkräften verursacht durch den Aufprall auf das Ende, zu einer Beschädigung des elektrischen Antriebes und des Werkstückes kommen. Stellen Sie diese Werte dementsprechend niedriger ein. Siehe Betriebsanleitung des elektrischen Antriebs.	
0	Stellkraft	Max. Drehmoment während des Positionierbetriebs (keine besondere Änderung erforderlich.)	
0	Area 1, Area 2	Bedingung, die das AREA-Ausgangssignal (Bereich) einschaltet.	
0	In Position	Verfahrweg während des Schubs. Übersteigt der Verfahrweg diese Einstellung, kommt es auch ohne Schub zum Stopp. Wird der Verfahrweg überschritten, schaltet sich das INP-Ausgangssignal nicht ein.	

Signal-Tabelle


* "*ALARM" und "*ESTOP" werden als negativ-logischer Schaltkreis dargestellt.

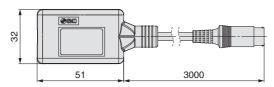

* "OUT" wird ausgegeben, wenn sich "DRIVE" von ON auf OFF ändert. Für nähere Angaben zum Controller für die Serie LEM siehe Betriebsanleitung. (Bei Einschaltung der Stromversorgung wird "DRIVE" oder "RESET" eingeschaltet (ON) oder "*ESTOP" wird ausgeschaltet (OFF), alle Ausgänge "OUT" werden OFF geschaltet.)

Eingang HOLD Ausgang BUSY Geschwindigkeit Verzögerungspunkt HOLD während des Betriebs On OFF On MOFF

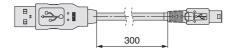
Wenn sich der Antrieb im Positionsbereich befindet, stoppt er auch dann nicht, wenn ein HOLD-Signal eingegeben wird.

Übersteigt die aktuelle Schubkraft den Schwellenwert (Trigger LV) der Schrittdaten, wird das INP-Signal eingeschaltet.

Die Alarmgruppe kann anhand der Kombination von OUT-Signalen bei der Alarmerzeugung identifiziert werden.


* "*ALARM" wird als negativ-logischer Schaltkreis ausgedrückt.

Optionen


● Kommunikationskabel für Controllerparametrierung

1 Kommunikationskabel JXC-W2A-C

* Kann direkt an den Controller angeschlossen werden.

② USB-Kabel LEC-W2-U

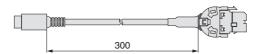
3Controller-Einstellset JXC-W2A

Ein Set, bestehend aus einem Kommunikationskabel (JXC-W2A-C) und einem USB-Kabel (LEC-W2-U)

<Controller-Software/USB-Treiber>

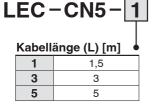
- Controller-Software
- USB-Treiber (Für JXC-W2A-C)

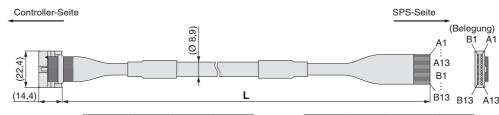
Von der SMC-Webseite herunterladen:


https://www.smc.de

Systemvoraussetzungen Hardware

OS	Windows®7, Windows®8.1, Windows®10
Kommunikations- schnittstelle	USB 1.1 oder USB 2.0-Anschlüsse
Anzeige	1024 x 768 oder höher


Windows®7, Windows®8,1, und Windows®10sind registrierte Handelsmarken der Microsoft Corporation in den USA.


■ Adapterkabel P5062-5 (Kabellänge: 300 mm)

 * Für den Anschluss der Teaching-Box (LEC-T1-3□G□) oder des Controller-Einstellsets (LEC-W2□) an den Controller wird ein Adapterkabel benötigt.

I/O-Kabel

Leiterquerschnitt: AWG28

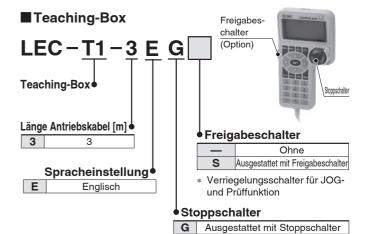
Gewicht

Produkt-Nr.	Gewicht [g]
LEC-CN5-1	170
LEC-CN5-3	320
LEC-CN5-5	520

Anschluss- stecker-Nr.	Anschluss- Isolierungs- stecker-Nr. farbe		Punkt- farbe
A1	Hellbraun		schwarz
A2	Hellbraun		rot
А3	gelb		schwarz
A4	gelb		rot
A5	hellgrün		schwarz
A6	hellgrün		rot
A7	grau		schwarz
A8	grau		rot
A9	weiß		schwarz
A10	weiß		rot
A11	Hellbraun		schwarz
A12	Hellbraun		rot
A13	gelb		schwarz

■ Spannungsversorgungsstecker JXC-CPW

> 6 5 4 3 2 1


① C24V ④ 0V ② M24V ⑤ N.C.

(3) EMG

(6) LK RLS

Spannungsversorgungsstecker

	3 3					
Klemmenbe- zeichnung	Funktion	Details				
0V	Gemeinsame Versorgung (–)	Die M24V-Klemme, C24V-Klemme, EMG-Klemme und LK RLS-Klemme liegen an gemeinsamer Leitung (-).				
M24V	Motor-Spannungsversorgung (+)	Motor-Spannungsversorgung (+) am Controller				
C24V	Steuerungs-Spannungsversorgung (+)	Steuerungs-Spannungsversorgung (+) am Controller				
EMG	Stopp Signal (+)	Positive Spannung für Stopp Signal Freigabe				
LK RLS	Entriegelung (+)	Positive Spannung für Entriegelung				

Technische Daten

Element	Beschreibung				
Schalter	Stoppschalter, Schalter zum Aktivieren (Option)				
Länge Antriebskabel [m]	3				
Schutzart	IP64 (außer Stecker)				
Betriebstemperaturbereich [°C]	5 bis 50				
Luftfeuchtigkeitsbereich [%RH]	max. 90 (keine Kondensation)				
Gewicht [g]	350 (außer Kabel)				

Anschluss- stecker-Nr.	Isolierungs- farbe	Punktmar- kierung	Punkt- farbe			
B1	gelb		rot			
B2	hellgrün		schwarz			
B3	hellgrün		rot			
B4	grau		schwarz			
B5	grau		rot			
B6	weiß		schwarz			
B7	weiß		rot			
B8	Hellbraun		schwarz			
B9	Hellbraun		rot			
B10	gelb		schwarz			
B11	gelb		rot			
B12	hellgrün		schwarz			
B13	hellgrün		rot			
_	Abschirmung					

High Performance Schrittmotor-Controller

Serie JXCEH/9H/PH

(RoHS)

Bestellschlüssel

Feldbusprotokoll

E	EtherCAT
9	EtherNet/IP™
Р	PROFINET

2 Spezifikation

Н	1 Achse/High Performance Ausführung

3 Montage

7	Schraubmontage
8 *1	DIN-Schiene

*1 Die DIN-Schiene ist nicht inbegriffen. Bitte separat bestellen. (siehe Seite 42).

4 Bestell-Nr. Antrieb

Ohne Kabelspezifikationen und Antriebsoptionen Beispiel: Geben Sie "LEKFS25GA-400" für die Ausführung LEKFS25GA-400B-R1C□H□□ ein. Unbeschriebener Controller*1

*1 Erfordert spezielle Software (JXC-BCW)

Der Controller wird als einzelne Einheit verkauft, nachdem der entsprechende Antrieb vorprogrammiert wurde.

Stellen Sie sicher, dass die Kombination aus Controller und Antrieb korrekt ist.

① Überprüfen Sie die Modellnummer auf dem Typenschild des Antriebs. Diese Nummer muss mit der des Controllers übereinstimmen.

* Siehe Betriebsanleitung für die Verwendung der Produkte. Diese können Sie von unserer Webseite: http://www.smc.eu herunterladen.

Hinweise für unbeschriebene Controller (JXC□H□-BC)

Einen unbeschriebenen Controller kann der Kunde mit Daten des Antriebs beschreiben, mit dem er kombiniert und verwendet werden soll. Verwenden Sie zum Schreiben von Daten die Controller-Einstellungssoftware ACT Controller 2 oder die dedizierte Software JXC-BCW.

- ACT Controller 2 und JXC-BCW stehen auf der SMC-Website zum Download bereit.
- Um diese Software zu verwenden, bestellen Sie das Kommunikationskabel für die Controller-Einstellung (JXC-W2A-C) und das USB-Kabel (LEC-W2-U) separat.

Systemvoraussetzungen Hardware

os	Windows®10 (64 Bit)	Windows®7	Windows®8	Windows®10		
Software	ACT Controller 2 (mit JXC-BCW-Funktion)	JXC-BCW				

Windows®7, Windows®8, und Windows®10 sind registrierte Handelsmarken der Microsoft Corporation in den USA

SMC-Website: https://www.smc.de

⚠ Achtung

[CE/UKCA-konforme Produkte]

1) die Erfüllung der EMV-Richtlinie wurde geprüft, indem der elektrische Antrieb der Serie LE mit dem Modell der Serie JXCFH/PH kombiniert wurde.

Die EMV ist von der Konfiguration der Schalttafel des Kunden und von der Beeinflussung sonstiger elektrischer Geräte und Verdrahtung abhängig. Aus diesem Grund kann die Erfüllung der EMV-Richtlinie nicht für SMC-Bauteile zertifiziert werden, die unter realen Betriebsbedingungen in Kundensystemen integriert sind. Daher muss der Kunde die Erfüllung der EMV-Richtlinie für das Gesamtsvstem bestehend aus allen Maschinen und Anlagen überprüfen.

2 Für die Serie JXCEH/PH (Schrittmotor-Controller) wurde die EMV-Konformität durch den Einbau eines Störschutzfiltersatzes (LEC-NFA) geprüft.

Informationen über den Störschutzfiltersatz finden Sie auf Seite 42. Informationen zur Installation finden Sie in der Betriebsanleitung des JXCEH/PH.

Serie JXCEH/9H/PH

Technische Daten

	Mod	lell	JXCEH	JXC9H JXCPH				
Fe	ldbusprot	okoll	EtherCAT	EtherNet/IP™	PROFINET			
kompatibler Motor		Motor		Schrittmotor (Servo/24 VDC)				
Sp	oannungsv	ersorgung		Versorgungsspannung: 24 VDC ±10 %				
Stı	romaufnahm	e (Controller)	max. 200 mA	max. 200 mA	max. 200 mA			
K	ompatibler	Encoder		Batterieloser Absolut-Encoder				
8	Verwend-	Protokoll	EtherCAT*2	EtherNet/IP™*2	PROFINET*2			
kati	bares	Version*1	Konformitätsprüfung	Teil 1 (Ausgabe 3.14)	Spezifikation			
Ē	System	Version	Bericht V.1.2.6	Teil 2 (Ausgabe 1.15)	Version 2.32			
Technische Daten Kommunikation	Übertragungs- geschwindigkeit		100 Mbps* ²	10/100 Mbps*2 (automatische Verbindungsherstellung) 100 Mbps*2				
ē	Konfigura	tionsdatei*3	ESI-Datei	EDS-Datei	GSDML-Datei			
S	I/O		Eingabe 20 Bytes	Eingabe 36 Bytes	Eingabe 36 Bytes			
흥	Installation	onsbereich	Ausgabe 36 Bytes	Ausgabe 36 Bytes	Ausgabe 36 Bytes			
P	Abschlusswiderstand		nicht inbegriffen					
Da	atenspeich	erung		EEPROM				
St	atusanzei	ge	PWR, RUN, ALM, ERR	PWR, ALM, MS, NS	PWR, ALM, SF, BF			
Lä	nge Antriel	oskabel [m]	Antriebskabel: max. 20					
Κi	ühlsystem		natürliche Luftkühlung					
Be	triebstempera	turbereich [°C]		0 bis 40 (kein Gefrieren)				
Lu	ftfeuchtigkeits	bereich [%RH]		max. 90 (keine Kondensation)				
Isc	olationswide	rstand [MΩ]	Zwischen a	allen externen Klemmen und Gehäuse: 50	(500 VDC)			
G	ewicht [g]		260 (Schraubmontage) 280 (DIN-Schienenmontage)	250 (Schraubmontage) 260 (Schraubmonta 270 (DIN-Schienenmontage) 280 (DIN-Schienenmontage)				

- *1 Bitte beachten Sie, dass Angaben zu Versionen Änderungen unterliegen können.
- *2 Verwenden Sie für PROFINET, EtherNet/IP™ und EtherCATein abgeschirmtes Kommunikationskabel mit CAT5 oder höher.
- *3 Die Dateien können von der SMC-Webseite heruntergeladen werden

Markenzeichen

EtherNet/IP® ist ein registriert Warenzeichen von ODVA, Inc.

EtherCAT® ist eine registrierte Handelsmarke und patentierte Technologie, unter Lizenz der Beckhoff Automation GmbH, Deutschland.

Beispiel Betriebsbefehl

Zusätzlich zur Schrittdaten-Eingabe von maximal 64 Punkten in jedem Kommunikationsprotokoll kann jeder Parameter in Echtzeit über die numerische Dateneingabe geändert werden.

* Alle numerischen Werte außer "Bewegungskraft", "Bereich 1" und "Bereich 2" können verwendet werden, um das Gerät mittels numerischer Befehle von JXCL1 zu betreiben.

<Anwendungsbeispiel> Bewegung zwischen 2 Punkten

1	۷r.	Bewegungsmodus	Geschwindigkeit	Position	Beschleunigung	Verzögerung	Schubkraft	Trigger LV	Schubgeschwindigkeit	Stellkraft	Area 1	Area 2	In Position
	0	1: Absolut	100	10	3000	3000	0	0	0	100	0	0	0,50
	1	1: Absolut	100	100	3000	3000	0	0	0	100	0	0	0,50

<Eingabe der Schrittnummer >

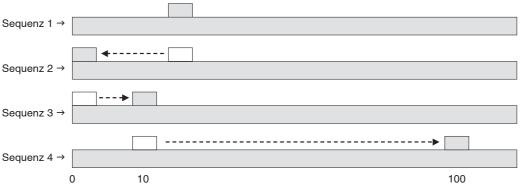
Sequenz 1: Befehl für Servo ON

Sequenz 2: Befehl für Rückkehr zur Ausgangsposition

Sequenz 3: Schrittdaten-Nr. 0 für das DRIVE-Signal eingeben.

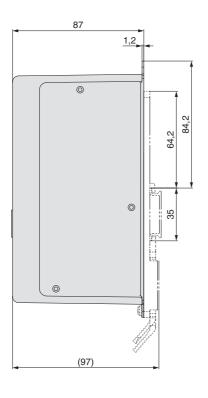
Sequenz 4: Daten für Schritt-Nr. 1 für das DRIVE-Signal eingeben, nachdem das DRIVE-Signal vorübergehend ausgeschaltet wurde.

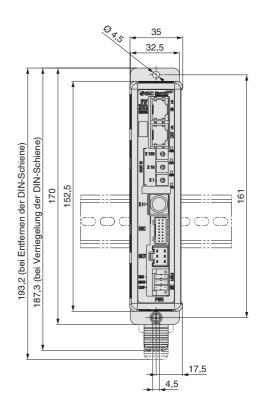
<Numerische Dateneingabe>

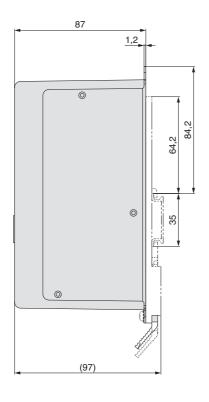

Sequenz 1: Befehl für Servo ON

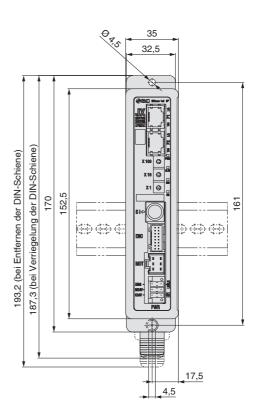
Sequenz 2: Befehl für Rückkehr zur Ausgangsposition

Sequenz 3: Schrittdaten-Nr. 0 eingeben und Befehlseingabe-Flag (Position) einschalten. Als Zielposition 10 eingeben. Anschließend schalten Sie das Start-Flag ein.

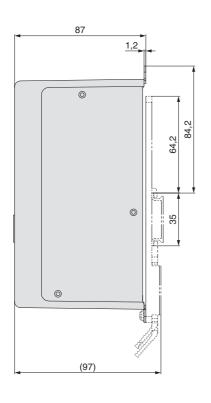

Sequenz 4: Schrittdaten-Nr. 0 und Befehlseingabe-Flag (Position) einschalten, um die Zielposition auf 100 zu ändern, während das Start-Flag eingeschaltet ist.

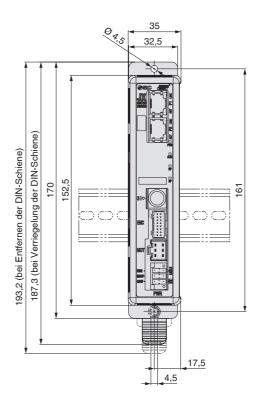

Die gleiche Operation kann mit jedem Betriebsbefehl durchgeführt werden.




JXCEH

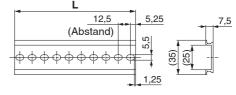
JXC9H





Serie JXCEH/9H/PH

Abmessungen


JXCPH

DIN-Schiene AXT100-DR-□

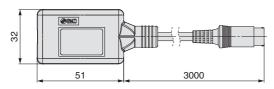
* Für \square eine Nummer aus der Zeile "Nr" der nachstehenden Tabelle eingeben.

L-Maß [mm]

	F1																			
Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
L	23	35,5	48	60,5	73	85,5	98	110,5	123	135,5	148	160,5	173	185,5	198	210,5	223	235,5	248	260,5
Nr.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
L	273	285,5	298	310,5	323	335,5	348	360,5	373	385,5	398	410,5	423	435,5	448	460,5	473	485,5	498	510,5

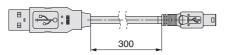
DIN-Schienen-Anbausatz

LEC-3-D0 (mit 2 Befestigungsschrauben)


Der DIN-Schienen-Anbausatz kann nachträglich bestellt und an den Controller mit Schraubmontage montiert werden.

High Performance Serie JXCEH/9H/PH

Optionen


Kommunikationskabel f ür Controllerparametrierung

1) Kommunikationskabel JXC-W2A-C

* Kann direkt an den Controller angeschlossen werden.

② USB-Kabel LEC-W2-U

③Controller-Einstellset JXC-W2A

Ein Set, bestehend aus einem Kommunikationskabel (JXC-W2A-C) und einem USB-Kabel (LEC-W2-U)

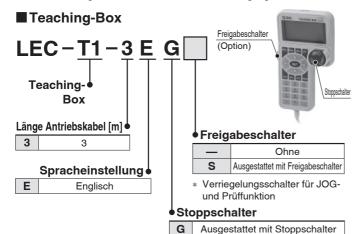
- <Controller-Software/USB-Treiber>
- · Controller-Software
- · USB-Treiber (für JXC-W2A-C)

Von der SMC-Webseite herunterladen: https://www.smc.eu

Systemvoraussetzungen Hardware

OS	Windows®7, Windows®8.1, Windows®10
Kommunikations- schnittstelle	USB 1.1 oder USB 2.0-Anschlüsse
Anzeige	1024 x 768 oder höher

 Windows®7, Windows®8.1, und Windows®10 sind registrierte Handelsmarken der Microsoft Corporation in den USA.

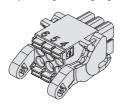

■ DIN-Schienen-Montagesatz LEC-3-D0

* Mit 2 Befestigungsschrauben

Der DIN-Schienen-Anbausatz kann nachträglich bestellt und an den Controller mit Schraubmontage montiert werden.

■ DIN-Schiene AXT100-DR-□

* Für □, die "Nr." aus der Tabelle auf Seite 41 eingeben. Siehe Abmessungen auf Seiten 40 und 41 für Befestigungsdimensionen.



Technische Daten

TOOTHIOOTIC BUICH	
Element	Beschreibung
Schalter	Stoppschalter, Schalter zum Aktivieren (Option)
Länge Antriebskabel [m]	3
Schutzart	IP64 (außer Stecker)
Betriebstemperaturbereich [°C]	5 bis 50
Luftfeuchtigkeitsbereich [%RH]	max. 90 (keine Kondensation)
Gewicht [g]	350 (außer Kabel)

■ Spannungsversorgungsstecker JXC-CPW

* Der Spannungsversorgungsstecker ist Zubehör

660	l
0 0 4	
$ \mathfrak{A} \mathfrak{D} \mathfrak{A} $	
	ı

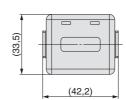
① C24V ② M24V ④ 0V ⑤ N.C.

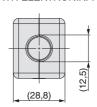
③ EMG ⑥ LK RLS

Spannungsversorgungsstecker

Klemmenbe- zeichnung	Funktion	Details				
0V	Gemeinsame Versorgung (–)	Die M24V-Klemme, C24V-Klemme, EMG-Klemme und LK RLS- Klemme liegen an gemeinsamer Leitung (-).				
M24V	Motor-Spannungsversorgung (+)	Motor-Spannungsversorgung (+) am Controller				
C24V	Steuerungs-Spannungsversorgung (+)	Steuerungs-Spannungsversorgung (+) am Controller				
EMG	Stopp Signal (+)	Positive Spannung für Stopp Signal Freigabe				
LK RLS	Entriegelung (+)	Positive Spannung für Entriegelung				

■ Adapterkabel P5062-5 (Kabellänge: 300 mm)

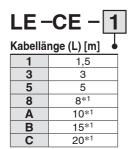


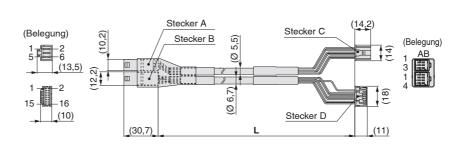

 Für den Anschluss der Teaching-Box (LEC-T1-3□G□) oder des Controller-Einstellsets (LEC-W2) an den Controller wird ein Adapterkabel benötigt.

■ Störfiltersatz

LEC-NFA

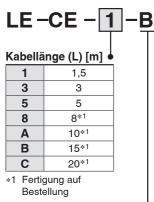
Inhalt des Satzes: 2 Störschutzfilter (Hergestellt von WÜRTH ELEKTRONIK: 74271222)




 Informationen zur Installation finden Sie in der Betriebsanleitung des JXCEH/PH.

Serie JXC5H/6H Serie JXCEH/9H/PH Antriebskabel (Option)

[Roboterkabel für batterieloser Absolut-Encoder (Schrittmotor 24 VDC)]



Gewicht

Produkt-Nr.	Gewicht [g]	Anm.
LE-CE-1	190	
LE-CE-3	360	
LE-CE-5	570	
LE-CE-8	900	Robotikkabel
LE-CE-A	1120	
LE-CE-B	1680	
LE-CE-C	2210	

Signal	Belegung Stecker A		Aderfarbe	Belegung Stecker C
Α	B-1		braun	2
Ā	A-1		rot	1
В	B-2		orange	6
B	A-2		gelb	5
COM-A/COM	B-3		grün	3
COM-B/—	A-3		blau	4
Signal	Belegung Stecker B	Abschirmung	Aderfarbe	Belegung Stecker D
Vcc	B-1		braun	12
Erdung	A-1		schwarz	13
Ā	B-2		Rot	7
Α	A-2		schwarz	6
B	B-3		orange	9
В	A-3		schwarz	8
SD+ (RX)	B-4		gelb	11
SD- (TX)	A-4	 	schwarz	10
		` `	schwarz	3

[Roboterkabel mit Motorbremse für batterieloser Absolut-Encoder (Schrittmotor 24 VDC)]

Stecker A Stecker B Stecker B Stecker D Stecker D Stecker D AB AB (14,2) (Belegung) AB (14,2) Stecker D (14,2) (Belegung) AB (14,7) AB (14,7) AB (14,7)

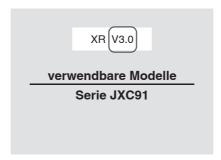
Gewicht

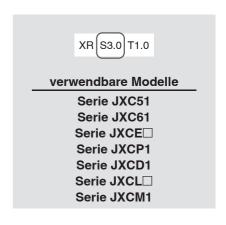
Produkt-Nr.	Gewicht [g]	Anm.
LE-CE-1-B	240	
LE-CE-3-B	460	
LE-CE-5-B	740	
LE-CE-8-B	1170	Robotikkabel
LE-CE-A-B	1460	
LE-CE-B-B	2120	
LE-CE-C-B	2890	

Signal	Belegung Stecker A		Aderfarbe	Belegung Stecker D
Ā	A-1		rot	1
				-
В	B-2		orange	6
B	A-2		gelb	5
COM-A/COM	B-3		grün	3
COM-B/—	A-3		blau	4
Signal	Belegung Stecker B	Abschirmung	Aderfarbe	Belegung Stecker E
Vcc	B-1		braun	12
Erdung	A-1		schwarz	13
Ā	B-2		Rot	7
Α	A-2		schwarz	6
B	B-3		orange	9
В	A-3		schwarz	8
SD+ (RX)	B-4		gelb	11
SD- (TX)	A-4		schwarz	10
	Belegung	```````\	schwarz	3
Signal	Stecker C			
Motorbremse (+)	B-1		Rot	4
Motorbremse (-)	A-1		schwarz	5
Sensor (+)	B-3		braun	1
Sensor (-)	A-3		blau	2

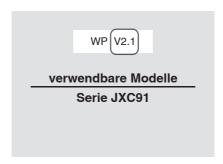
Serie JXC 1/JXC F/JXC H

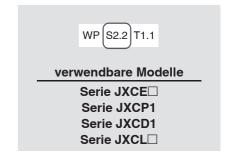
Sicherheitshinweise in Bezug auf die unterschiedlichen Controller-Versionen

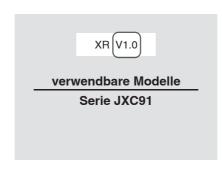

Da die Serie JXC verschiedene Controller-Version besitzt, sind die internen Parameter nicht kompatibel.

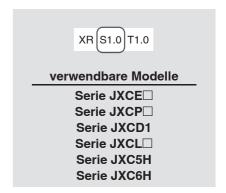

- Bei Verwendung des JXC□1□-BC verwenden Sie bitte die neueste Version des JXC-BCW (Parameterschreib-Programm).
- Derzeit sind 3 Versionen verfügbar: Produkte Version 1 (V1. oder S1.), Produkte Version 2 (V2. oder S2.) und Produkte Version 3 (V3. oder S3.). Beachten Sie, dass zum Schreiben einer Sicherungsdatei (.bkp) auf einen anderen Controller unter Verwendung des JXC-BCW, dieser über dieselbe Version verfügen muss wie der Controller, auf dem diese Datei erstellt wurde. (z. B. kann eine Sicherungsdatei, die von einem Produkt der Version 1 erstellt wurde, nur auf ein anderes Produkt der Version 1 geschrieben werden)

Identifizierung von Versionssymbolen




Produkte Serie JXC□□ Version V3.□ oder S3.□




Produkte Serie JXC□□ Version V2.□ oder S2.□

Produkte Serie JXC□□ Version V1.□ oder S1.□

Serie JXC H

Unbeschriebene Controller-Versionen und verwendbare Baugrößen

■ Der anwendbare Baugröße der elektrischen Antriebe/Zylinder ist abhängig von der Versionsnummer des Controllers. Überprüfen Sie daher die Controllerversion, bevor der unbeschriebene Controller verwendet wird.

Unbeschriebene Controller-Versionen/verwendbare Baugrößen elektrische Antriebe (Serie JXC□H)

Unbeschrieben	er Controller	Verwendbare Baugröße für elektrische Antriebe						
Serie	Controller- Version	LEFS□G	LEKF□G LEY□G		LEG	LESYH□G		
Serie JXC9H Serie JXCEH Serie JXCPH	Alle Versionen	16, 25, 32, 40	05 00 40	16, 25, 40	05 00 40	8, 16, 25		
0	Version 1.0	25, 32, 40	25, 32, 40	25, 40	25, 32, 40	16, 25		
Serie JXC5H/6H	Version 1.1 oder höher	16, 25, 32, 40		16, 25, 40		8, 16, 25		

Serie LEKFS G Batterieloser Absolut-Encoder Produktspezifische Sicherheitshinweise

Vor der Handhabung der Produkte durchlesen. Siehe Umschlagseite für Sicherheitsvorschriften. Weitere Hinweise für elektrische Antriebe entnehmen Sie den "Sicherheitshinweise zur Handhabung von SMC-Produkten" und der "Betriebsanleitung" auf der SMC-Website: https://www.smc.eu

Handhabung

Achtung

1. ID-Übereinstimmungsfehler des Absolutwertgebers bei der ersten Einschaltung

In den folgenden Fällen wird nach der Einschaltung ein "ID-Übereinstimmungsfehler" gemeldet. Führen Sie nach dem Zurücksetzen des Alarms vor der Verwendung zunächst eine Rückkehr zur Referenzposition durch.

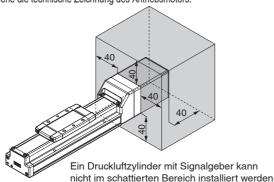
- Wenn ein elektrischer Antrieb angeschlossen wird und die Spannungsversorgung zur Erstinbetriebnahme eingeschaltet wird*¹
- · Wenn der Antrieb oder Motor ersetzt wird
- · Wenn der Controller ersetzt wird
- *1 Wenn Sie einen elektrischen Antrieb und einen Controller mit der eingestellten Bestellnummer erworben haben, wurde die Kopplung möglicherweise bereits vorgenommen, sodass der Alarm nicht ausgelöst wird.

"ID-Übereinstimmungsfehler"

Der Betrieb wird durch die Abstimmung der Geber-ID auf der Seite des elektrischen Antriebs mit der im Controller registrierten ID ermöglicht. Dieser Alarm tritt auf, wenn die Geber-ID nicht mit dem registrierten Wert des Controllers übereinstimmt. Durch das Zurücksetzen dieses Alarms wird die Geber-ID erneut im Controller registriert (gekoppelt).

Wenn ein Controller nach Abschluss der Kopplung gewechselt wird								
	Geber-ID-Nr. (* Die folgenden Zahlen sind Beispiele.)							
Antrieb	17623	17623	17623	17623				
Controller	17623	17699	17699	17623				
ID-Übereinstimmungsfehler ist aufgetreten?	Nein	Ja	Fehlerrückste	ellung ⇒ Nein				

Die ID-Nummer wird automatisch überprüft, wenn die Steuerungs-Spannungsversorgung eingeschaltet wird.

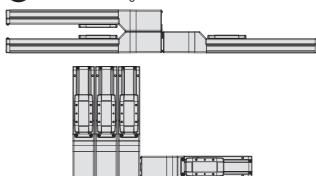

Wenn die ID-Nummer nicht übereinstimmt, wird ein Fehler ausgegeben.

In Umgebungen, in denen starke Magnetfelder vorhanden sind, kann die Verwendung eingeschränkt sein.

Im Drehgeber wird ein magnetischer Sensor verwendet. Wenn der Antrieb in einer Umgebung eingesetzt wird, in der starke Magnetfelder vorhanden sind, kann es daher zu Fehlfunktionen oder Ausfällen kommen.

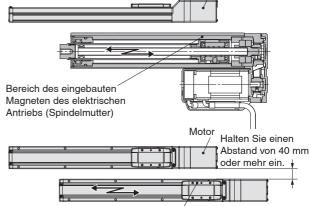
Setzen Sie den Antriebsmotor keinen Magnetfeldern mit einer magnetischen Flussdichte von 1 mT oder mehr aus.

Bei der Installation eines elektrischen Antriebs und eines Druckluftzylinders mit Signalgeber (z. B. CDQ2-Serie) oder mehrerer elektrischer Antriebe nebeneinander, muss ein Abstand von 40 mm oder mehr um den Motor eingehalten werden. Siehe die technische Zeichnung des Antriebsmotors.



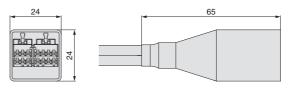
• Bei der Anordnung von Antrieben

SMC Antriebe können mit ihren Motoren nebeneinander angeordnet werden. Bei Antrieben mit eingebautem Signalgeber-Magneten ist jedoch ein Abstand von mindestens 40 mm zwischen den Motoren und der Stelle, an der Magnet vorbeigeführt wird, einzuhalten.


Bei der Serie LEF befindet sich der Magnet in der Mitte des Tisches, während er sich bei der Serie LEY im Bereich des Kolbens befindet. (Einzelheiten finden Sie in der technischen Zeichnung im Katalog).

Sie können mit ihren Motoren nebeneinander angeordnet werden.

Achten Sie darauf, dass sich die Motoren nicht in unmittelbarer Nähe der Stelle befinden, an der Magnet vorbeigeführt wird.


Motor

Bereich des eingebauten Magneten des elektrischen Antriebs (Schlitteneinheit)

3. Die Steckergröße des Motorkabels unterscheidet sich von der des elektrischen Antriebs mit einem Inkrementalgeber.

Der Motorkabelstecker eines elektrischen Antriebs mit einem batterieloser Absolut-Encoder unterscheidet sich von dem eines elektrischen Antriebs mit einem Inkrementalgeber. Da die Abmessungen der Steckerabdeckungen unterschiedlich sind, sollten Sie bei der Konstruktion die nachstehenden Maße berücksichtigen.

Abmessungen der Steckerabdeckung des batterieloser Absolut-Encoders

CE/UKCA/UL-Konformitätsliste

* CE-, UKCA- und UL-konforme Produkte finden Sie in den folgenden Tabellen.

Ab Februar 2022

■ Controller "O": konform "x": nicht konform

Kompatibler Motor	Serie	(€		c RL °us	
'		CA	Konformität	Zertifikat-Nr. (Datei-Nr.)	
	JXC5H/6H	0	0	E480340	
High Performance	JXCEH	0	0	E480340	
(Schrittmotor 24 VDC)	JXC9H	0	0	E480340	
	JXCPH			F480340	

■ Antriebe "O": konform "x": nicht konform

Kompatibler Motor	Serie	(€	c AL us			
·		CA	Konformität	Zertifikat-Nr. (Datei-Nr.)		
Batterieloser Absolut-Encoder (Schrittmotor 24 VDC)	LEKFS□G	0	×	_		

■ Antriebe (bei Bestellung mit einem Controller) "O": konform "x": nicht konform "—": nicht zutreffend

ſ	Kompatibler Motor		JXC5H/6H		JXCEH		JXC9H			JXCPH				
		Serie	(€		c SL us	•	c SN °us	(€	c SU °us		((c FN °us		
			UK CA	Konformität	Zertifikat-Nr. (Datei-Nr.)	CA	Konformität	Zertifikat-Nr. (Datei-Nr.)	CA	Konformität	Zertifikat-Nr. (Datei-Nr.)	CA	Konformität	Zertifikat-Nr. (Datei-Nr.)
	Batterieloser Absolut-Encoder (Schrittmotor 24 VDC)	LEKFS□G	0	×	_	0	×	_	0	×	_	0	×	_

Sicherheitsvorschriften

Diese Sicherheitsvorschriften sollen vor gefährlichen Situationen und/oder Sachschäden schützen. In diesen Hinweisen wird die potenzielle Gefahrenstufe mit den Kennzeichnungen "Achtung", "Warnung" oder "Gefahr" bezeichnet. Diese wichtigen Sicherheitshinweise müssen zusammen mit internationalen Sicherheitsstandards (ISO/ IEC) 1) und anderen Sicherheitsvorschriften beachtet werden.

∧ Achtung:

Achtung verweist auf eine Gefährdung mit geringem Risiko, die leichte bis mittelschwere Verletzungen zur Folge haben kann, wenn sie nicht verhindert wird.

Warnung verweist auf eine Gefährdung mit mittlerem **⚠** Warnung:

Risiko, die schwere Verletzungen oder den Tod zur Folge haben kann, wenn sie nicht verhindert wird.

Gefahr verweist auf eine Gefährdung mit hohem Risiko, die schwere Verletzungen oder den Tod zur Folge hat, wenn sie nicht verhindert wird.

1) ISO 4414: Pneumatische Fluidtechnik -- Empfehlungen für den Einsatz von Geräten für Leitungs- und Steuerungssysteme.

ISO 4413: Fluidtechnik - Ausführungsrichtlinien Hydraulik. IEC 60204-1: Sicherheit von Maschinen – Elektrische Ausrüstung

von Maschinen (Teil 1: Allgemeine Anforderungen)

ISO 10218-1: Industrieroboter - Sicherheitsanforderungen.

1. Verantwortlich für die Kompatibilität bzw. Eignung des Produkts ist die Person, die das System erstellt oder dessen technische Daten festleat.

Da das hier beschriebene Produkt unter verschiedenen Betriebsbedingungen eingesetzt wird, darf die Entscheidung über dessen Eignung für einen bestimmten Anwendungsfall erst nach genauer Analyse und/oder Tests erfolgen, mit denen die Erfüllung der spezifischen Anforderungen überprüft wird.

Die Erfüllung der zu erwartenden Leistung sowie die Gewährleistung der Sicherheit liegen in der Verantwortung der Person, die die Systemkompatibilität festgestellt hat.

Diese Person muss anhand der neuesten Kataloginformation ständig die Eignung aller Produktdaten überprüfen und dabei im Zuge der Systemkonfiguration alle Möglichkeiten eines Geräteausfalls ausreichend berücksichtigen.

2. Maschinen und Anlagen dürfen nur von entsprechend geschultem Personal betrieben werden.

Das hier beschriebene Produkt kann bei unsachgemäßer Handhabung

Montage-, Inbetriebnahme- und Reparaturarbeiten an Maschinen und Anlagen, einschließlich der Produkte von SMC, dürfen nur von entsprechend geschultem und erfahrenem Personal vorgenommen

3. Wartungsarbeiten an Maschinen und Anlagen oder der Ausbau einzelner Komponenten dürfen erst dann vorgenommen werden, wenn die Sicherheit gewährleistet ist.

Inspektions- und Wartungsarbeiten an Maschinen und Anlagen dürfen erst dann ausgeführt werden, wenn alle Maßnahmen überprüft wurden, die ein Herunterfallen oder unvorhergesehene Bewegungen des angetriebenen Obiekts verhindern.

Vor dem Ausbau des Produkts müssen vorher alle oben genannten Sicherheitsmaßnahmen ausgeführt und die Stromversorgung abgetrennt werden. Außerdem müssen die speziellen Vorsichtsmaßnahmen für alle entsprechenden Teile sorgfältig gelesen und verstanden worden sein. Vor dem erneuten Start der Maschine bzw. Anlage sind Maßnahmen zu treffen, um unvorhergesehene Bewegungen des Produkts oder Fehlfunktionen zu verhindern.

- 4. Die in diesem Katalog aufgeführten Produkte werden ausschließlich für die Verwendung in der Fertigungsindustrie und dort in der Automatisierungstechnik konstruiert und hergestellt. Für den Einsatz in anderen Anwendungen oder unter den im folgenden aufgeführten Bedingungen sind diese Produkte weder konstruiert, noch ausgelegt:
 - 1) Einsatz- bzw. Umgebungsbedingungen, die von den angegebenen technischen Daten abweichen, oder Nutzung des Produkts im Freien oder unter direkter Sonneneinstrahlung.
 - 2) Installation innerhalb von Maschinen und Anlagen, die in Verbindung mit Kernenergie, Eisenbahnen, Luft- und Raumfahrttechnik, Schiffen, Kraftfahrzeugen, militärischen Einrichtungen, Verbrennungsanlagen, medizinischen Geräten, Medizinprodukten oder Freizeitgeräten eingesetzt werden oder mit Lebensmitteln und Getränken, Notausschaltkreisen, Kupplungs- und Bremsschaltkreisen in Stanz- und Pressanwendungen, Sicherheitsausrüstungen oder anderen Anwendungen in Kontakt kommen, soweit dies nicht in der Spezifikation zum jeweiligen Produkt in diesem Katalog ausdrücklich als Ausnahmeanwendung für das jeweilige Produkt angegeben ist.

Achtung

- 3) Anwendungen, bei denen die Möglichkeit von Schäden an Personen, Sachwerten oder Tieren besteht und die eine besondere Sicherheitsanalyse verlangen.
- 4) Verwendung in Verriegelungssystemen, die ein doppeltes Verriegelungssystem mit mechanischer Schutzfunktion zum Schutz vor Ausfällen und eine regelmäßige Funktionsprüfung erfordern.

Bitte kontaktieren Sie SMC damit wir Ihre Spezifikation für spezielle Anwendungen prüfen und Ihnen ein geeignetes Produkt anbieten können.

Achtung

1. Das Produkt wurde für die Verwendung in der herstellenden Industrie konzipiert.

Das hier beschriebene Produkt wurde für die friedliche Nutzung in Fertigungsunternehmen entwickelt. Wenn Sie das Produkt in anderen Wirtschaftszweigen verwenden möchten, müssen Sie SMC vorher informieren und bei Bedarf entsprechende technische Daten aushändigen oder einen gesonderten Vertrag unterzeichnen.

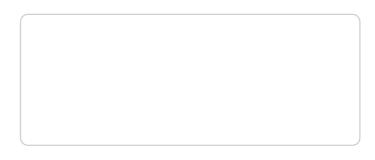
Wenden Sie sich bei Fragen bitte an die nächste SMC-Vertriebsniederlassung.

Einhaltung von Vorschriften

Das Produkt unterliegt den folgenden Bestimmungen zur "Einhaltung von Vorschriften".

Lesen Sie diese Punkte durch und erklären Sie Ihr Einverständnis, bevor Sie das Produkt verwenden.

Einhaltung von Vorschriften


- 1. Die Verwendung von SMC-Produkten in Fertigungsmaschinen von Herstellern von Massenvernichtungswaffen oder sonstigen Waffen ist strengstens untersagt.
- 2. Der Export von SMC-Produkten oder -Technologie von einem Land in ein anderes hat nach den geltenden Sicherheitsvorschriften und -normen der an der Transaktion beteiligten Länder zu erfolgen. Vor dem internationalen Versand eines jeglichen SMC-Produkts ist sicherzustellen, dass alle nationalen Vorschriften in Bezug auf den Export bekannt sind und befolgt werden.

Achtung

SMC-Produkte sind nicht für den Einsatz als Geräte im gesetzlichen Messwesen bestimmt.

Bei den von SMC hergestellten oder vertriebenen Produkten handelt es sich nicht um Messinstrumente, die durch Musterzulassungsprüfungen gemäß den Messgesetzen eines jeden Landes qualifiziert wurden.

Daher können SMC-Produkte nicht für betriebliche Zwecke oder Zulassungen verwendet werden, die den geltenden Rechtsvorschriften für Messungen des jeweiligen Landes unterliegen.

SMC Corporation (Europe)

Austria +43 (0)2262622800 www.smc.at Belgium +32 (0)33551464 www.smc.be Bulgaria +359 (0)2807670 Croatia +385 (0)13707288 www.smc.hr Czech Republic +420 541424611 Denmark +45 70252900 Estonia +372 651 0370 Finland +358 207513513 France Germany +49 (0)61034020 Greece +30 210 2717265 Hungary +36 23513000 Ireland +39 03990691 Italy Latvia +371 67817700

www.smc.bg www.smc.cz www.smcdk.com www.smcee.ee www.smc.fi +33 (0)164761000 www.smc-france.fr www.smc.de www.smchellas.gr www.smc.hu www.smcitalia.it www.smc.lv

office@smc.at info@smc.be office@smc.bg office@smc.hr office@smc.cz smc@smcdk.com info@smcee.ee smcfi@smc.fi supportclient@smc-france.fr info@smc.de sales@smchellas.gr office@smc.hu +353 (0)14039000 www.smcautomation.ie sales@smcautomation.ie mailbox@smcitalia it info@smc.lv

Lithuania +370 5 2308118 www.smclt.lt Netherlands +31 (0)205318888 www.smc.nl Norway www.smc-norge.no +47 67129020 +48 222119600 www.smc.pl Poland +351 214724500 Portugal www.smc.eu Romania +40 213205111 www.smcromania.ro Russia +7 (812)3036600 www.smc.eu Slovakia +421 (0)413213212 www.smc.sk Slovenia +386 (0)73885412 www.smc.si Spain +34 945184100 www.smc.eu Sweden +46 (0)86031240 www.smc.nu **Switzerland** +41 (0)523963131 www.smc.ch Turkey +90 212 489 0 440 www.smcturkey.com.tr UK +44 (0)845 121 5122 www.smc.uk

info@smclt.lt info@smc.nl post@smc-norge.no office@smc.pl apoioclientept@smc.smces.es smcromania@smcromania.ro sales@smcru.com office@smc.sk office@smc si post@smc.smces.es smc@smc.nu info@smc.ch satis@smcturkey.com.tr sales@smc.uk

South Africa +27 10 900 1233 zasales@smcza.co.za www.smcza.co.za