
Kolbenstangenloser Bandzylinder Serie MY1

Fünf Führungsarten ermöglichen einen grossen Auswahlbereich

Kolbenstangenloser Bandzylinder

Serie MY1

Zentraler Luftanschluss

Stützelement

Verhindert die Abweichung

des Zylinderrohrs bei

Langhüben.

Die Leitungsanschlüsse sind auf einer Seite zusammengefasst.

Ausführung mit Präzisionsführung mit hoher Steifigkeit Hohe Lasten, hohe Momente und hohe Präzision Ideal zum Transport und für Pick-and-Place Anwendungen schwerer Werkstücke Präzisions-Doppelführung Durch die Ver-wendung

Durch die Ver-wendung von zwei Linear-führunge n auch für schwere Werkstücke

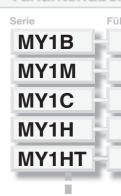
Verfügbare Hübe

Die Hübe sind in 1 mm-Schritten erhältlich.

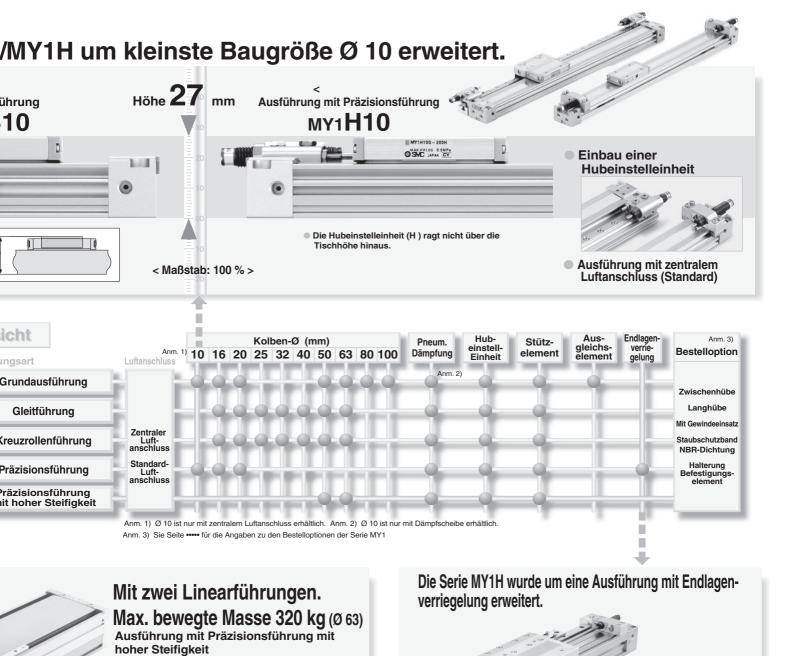
Hubeinstelleinheit

Die Hubeinstellung kann einoder beidseitig vorgenommen werden.

- Anschlagbolzen
- Anschlagbolzen
 Stoßdämpfer für geringe Lasten + Anschlagbolzen (L)
- Stoßdämpfer für schwere Lasten + Anschlagbolzen (H)


Austauschbarkeit

Grundkörper und Befestigungslöcher der Serien MY1M und MY1C sind identisch.


Serie MY1B

Variantenübers

Die Abmessungen entsprechen

möglich

denen der Standardausführung

Verriegelung ein- oder beidseitig

MY1HT50, 63

Zylinderaustausch

nicht beein-

trächtigt.

Montagegewinde mit

einfache Installation

Transportösen für

sind Standard.

Mit Transportösen

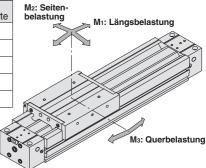
Das Werkstück wird beim

Verriegelungsstift

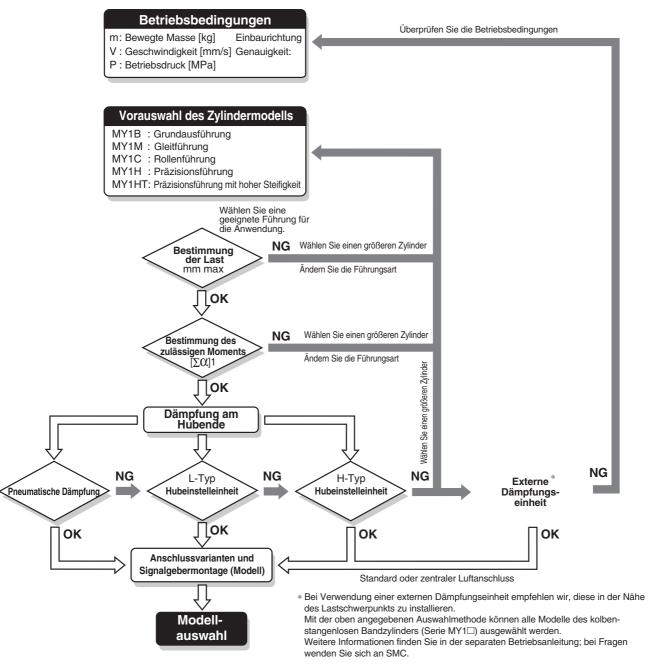
Für präzise Hubregulierung

0

Serie MY1 Modellauswahl

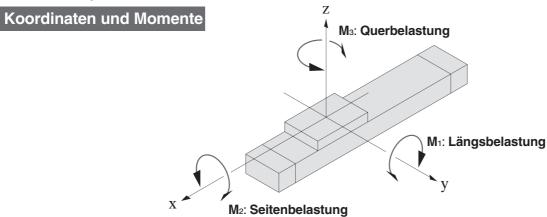

Wählen Sie das für Ihre Anwendung am besten geeignete Modell der Serie MY1 gemäß der folgenden Vorgehensweise.

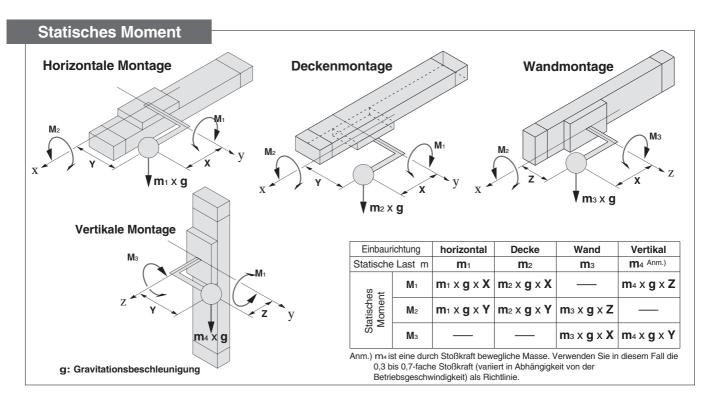
Standardwerte zur Vorauswahl des Modells

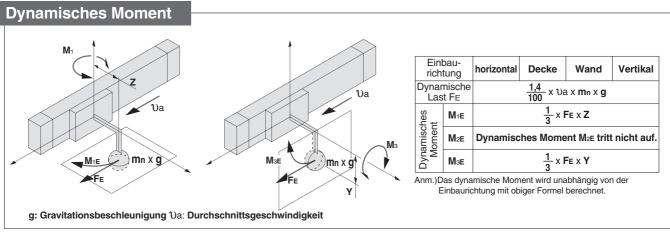

Zylinder- modell	Führungsart	Standardwerte zur Auswahl der Führung ^{Anm. 1)}	Grafiken für zulässige Werte
MY1B	Grundausführung	Keine garantierte Genauigkeit erforderlich, in der Regel mit separater Führung	Siehe S. 10
MY1M	Gleitführung	Schlitten-Genauigkeit ca. 0,12 mm ^{Anm. 2)}	Siehe S. 34
MY1C	Rollenführung	Schlitten-Genauigkeit ca. 0,05 mm ^{Anm. 2)}	Siehe S. 54
MY1H	Präzisionsführung	Schlitten-Genauigkeit von max. 0,05 mm erforderlich Anm. 2)	Siehe S. 74
MY1HT	Präzisionsführung mit hoher Steifigkeit	Schlitten-Genauigkeit von max. 0,05 mm erforderlich Anm. 2)	Siehe S. 96

Anm. 1) Verwenden Sie dies als Standardwert bei der Auswahl bzgl. der Führungsgenauigkeit. Wenden Sie sich an SMC, wenn eine garantierte Genauigkeit für die Serie MY1C/MY1H erforderlich ist.

Ann. 2) Die Genauigkeit gibt die Abweichung des Schlittens (am Hubende) an, wenn ein Moment mit 50 % des im Katalog angegebenen zulässigen Moments auf den Schlitten wirkt. (Referenzwert)

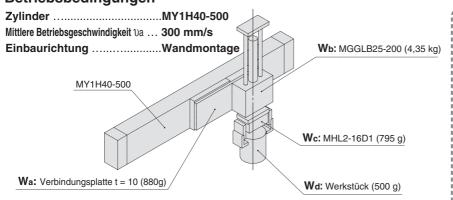

Auswahl-Fliessdiagramm

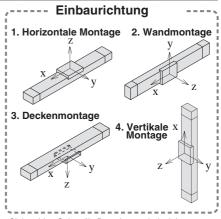




Arten der Belastungsmomente, die auf kolbenstangenlose Zylinder wirken

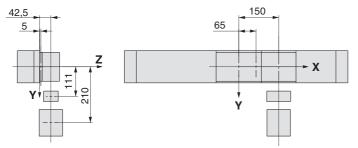
Abhängig von der Einbaurichtung, der Last und der Lage des Lastschwerpunkts können verschiedene Belastungsmomente erzeugt werden.





Serie MY1

Berechnung des Belastungsgrads der Führung


1 Betriebsbedingungen -

Siehe obige Seiten für Berechnungsbeispiele zu jeder Einbaurichtung.

2 Lastanbau

Werkstückmasse und Schwerpunkt

			-						
Werkstück- Nr. Wn	Massa		Schwerpunkt						
	Masse mn	X-Achse Xn	Y-Achse Yn	Z-Achse Zn					
Wa	0,88 kg	65 mm	0 mm	5 mm					
Wb	4,35 kg	150 mm	0 mm	42,5 mm					
Wc	0,795 kg	150 mm	111 mm	42,5 mm					
Wd	0,5 kg	150 mm	210 mm	42,5 mm					

3 Berechnung des Gesamtschwerpunkts

$$m_3 = \Sigma m_1$$

= 0,88 + 4,35 + 0,795 + 0,5 = **6,525 kg**

$$Y = \frac{1}{m_3} \times \Sigma \text{ (mn x yn)}$$

$$= \frac{1}{6,525} (0,88 \times 0 + 4,35 \times 0 + 0,795 \times 111 + 0,5 \times 210) = 29,6 \text{ mm}$$

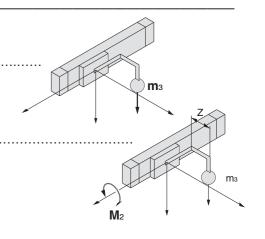
$$Z = \frac{1}{m_3} \times \Sigma \text{ (mn x zn)}$$

$$= \frac{1}{6,525} (0.88 \times 5 + 4.35 \times 42.5 + 0.795 \times 42.5 + 0.5 \times 42.5) = 37.4 \text{ mm}$$

4 Berechnung des Belastungsgrads für statische Last

m₃: Masse

m₃ max (aus 1 der Grafik MY1H/m₃) = 50 kg

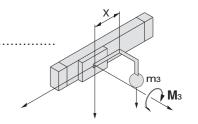

Belastungsgrad $\alpha_1 = m_3 / m_3 \text{ max} = 6,525/50 = 0,13$

M2: Moment

 M_2 max (aus 2 der Grafik MY1H/ M_2) = 50 Nm

 $M_2 = m_3 \times g \times Z = 6,525 \times 9,8 \times 37,4 \times 10^{-3} = 2,39 \text{ Nm}$

Belastungsgrad $\alpha_2 = M_2/M_2 \text{ max} = 2,39/50 = \textbf{0,05}$



M₃: Moment

M₃ max (aus 3 der Grafik MY1H/M₃) = 38,7 Nm

 $M_3 = m_3 x g x X = 6,525 x 9,8 x 138,5 x 10^{-3} = 8,86 Nm$

Belastungsgrad $\alpha_3 = M_3/M_3 \text{ max} = 8,86/38,7 = 0,23$

5 Berechnung des Belastungsgrads für dynamisches Moment

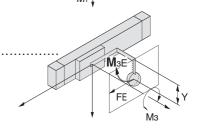
Äquivalente Last FE bei Aufprall

$$FE = \frac{1.4}{100} \times va \times g \times m = \frac{1.4}{100} \times 300 \times 9.8 \times 6.525 = 268.6 \text{ N}$$

M₁E: Moment

 M_1E max (aus 4 der Grafik MY1H/ M_1 in der 1,4 υa = 420 mm/s) = 35,9 Nm

$$M_1E = \frac{1}{3} \times FE \times Z = \frac{1}{3} \times 268,6 \times 37,4 \times 10^{-3} = 3,35 \text{ Nm}$$


Belastungsgrad $O_4 = M_1E/M_1E \text{ max} = 3,35/35,9 = 0,09$

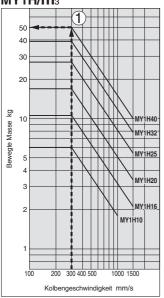
M₃E max (aus 5 der Grafik MY1H/M3 in der 1,4 va = 420 mm/s) = 27,6 Nm

$$M_3E = \frac{1}{3} \times FE \times Y = \frac{1}{3} \times 268,6 \times 29,6 \times 10^{-3} = 2,65 \text{ Nm}$$

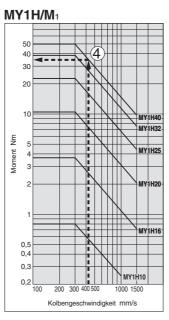
Belastungsgrad $\alpha 5 = M_3 E/M_3 E \max = 2,65/27,6 = 0,10$

6 Summieren und Überprüfen der Belastungsgrade der Führung

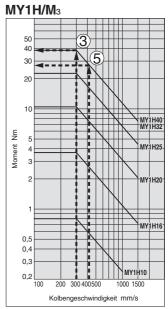
 $\Sigma \alpha = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 0,601$

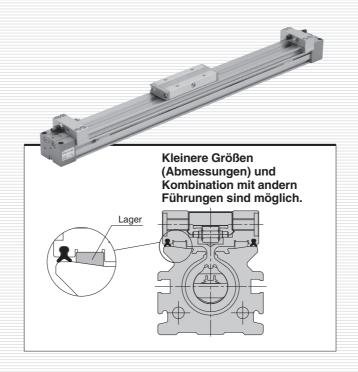

Die obige Berechnung ergibt einen zulässigen Wert; das ausgewählte Modell ist verwendbar.

Wählen Sie einen separaten Stoßdämpfer.


Ergibt die Summe der Belastungsgrade $\Sigma\alpha$ in der obigen Formel einen Wert größer 1, ziehen Sie eine geringere Geschwindigkeit, einen größeren Kolben-Ø oder eine andere Produktserie in Betracht.

Bewegte Masse


MY1H/m₃


Zulässiges Moment

MY1H/M2 50 40 30 20 10 MY1H40MY1H254 11 MY1H202 11 MY1H160.5 0.4 0.3 0.2 0,1 100 200 300 400 500 1000 1500

Serie MY1B Vor der Inbetriebnahme

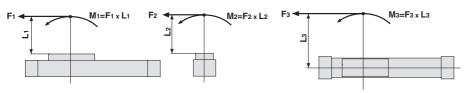
maximales erlaubtes Moment / Maximal bewegbare Masse

Madall	Kolben-Ø	max. zulä	assiges Mom	ent [N·m]	Maximale bewegte Masse [kg]			
Modell	[mm]	M1	M ₂	Мз	m1	m ₂	тз	
	10	0,8	0,1	0,3	5,0	1,0	0,5	
	16	2,5	0,3	0,8	15	3,0	1,7	
	20	5,0	0,6	1,5	21	4,2	3,0	
MY1B	50	78	9,3	23	70	14	20	
	63	160	19	48	83	16,6	29	
	80	315	37	95	120	24	42	
	100	615	73	184	150	30	60	

Die obigen Werte sind die maximal zulässigen Werte für das Moment und die Last. Entnehmen Sie den jeweiligen Diagrammen das maximal zulässige Moment und die maximal zulässige Last für spezifische Kolbengeschwindigkeiten.

Vorsichtsmaßnahmen bei der Auslegung

Wir empfehlen die Installation eines externen Stoßdämpfers, wenn der Zylinder mit einer anderen Führung kombiniert wird (Anschluss an Ausgleichselement, usw.) und die max. zulässige Last überschritten wird, oder wenn die Betriebsgeschwindigkeit 1000 bis 1500 mm/s für Kolben-Ø 16, 50, 63, 80 und 100 beträgt.


Bewegte Masse [kg]

Berechnung des Belastungsgrads der Führung

1. Zur Durchführung der Auswahlkalkulation müssen max. zulässige Last (1), statisches Moment (2) und dynamisches Moment (3) (zum Zeitpunkt des Aufpralls auf den Stopper) überprüft werden. * Verwenden Sie für die Auswertung ' υ a (Durchschnittsgeschwindigkeit) für (1) und (2) und υ (Aufprallgeschwindigkeit υ = 1,4 υ a) für (3). Berechnen Sie mmax für (1) aus dem Diagramm der max. zulässigen Last (m_1 , m_2 , m_3) und Mmax für (2) und (3) aus dem Diagramm für das max. zulässige Moment (M_1 , M_2 , M_3).

	+ Statisches Moment [M] (1) zulässiges statisches Moment [Mmax]	+ Dynamisches Moment [Me] (2) zulässiges dynamisches Moment [Memax.]
--	---	--

- Anm. 1) Durch die Last usw. im Ruhezustand des Zylinders erzeugtes Moment.
- Anm. 2) Durch die Stoßbelastung am Hubende erzeugtes Moment (bei Aufprall am Stopper).
- Anm. 3) Je nach Werkstückform können mehrere Momente auftreten. In diesem Fall entspricht die Summe der Belastungsgrade ($\Sigma\alpha$) der Summe aller Momente.

2. Referenzformeln (dynamisches Moment bei Aufprall)

Verwenden Sie folgende Formeln zur Berechnung des dynamischen Moments unter Berücksichtigung des Aufpralls am Stopper.

m: Bewegte Masse [kg]

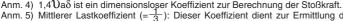
Last [N]

FE: Äquivalente Last zum Aufprall (beim Anstoßen an den Stopper) [N]

 ${\mathfrak V}$ a: Durchschnittsgeschwindigkeit [mm/s]

M: Statisches Moment [N·m]

 $\mathcal{V} = 1.4 \, \mathcal{V}a \, [\text{mm/s}] \, \text{Fe} = 1.4 \, \mathcal{V}a \cdot \delta \cdot \text{m} \cdot \text{g}$


 $\frac{1}{2} \cdot F_{E} \cdot L_1 = 4,57 \, \Im \delta mL$

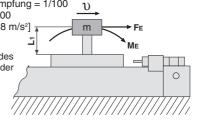
- **υ**: Aufprallgeschwindigkeit [mm/s]
- L₁: Abstand zum Last Schwerpunkt [m]
- M_E:Dynamisches Moment [N⋅m] Dämpfungskoeffizient

Mit elastischer Dämpfscheibe= 4/100 (MY1B10, MY1H10)

Mit pneumatischer Dämpfung = 1/100

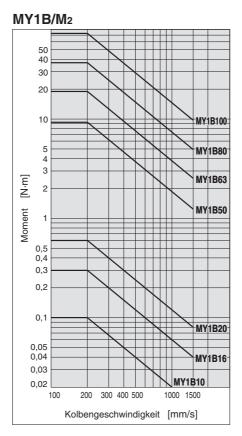
Mit Stoßdämpfer = 1/100 Erdbeschleunigung [9,8 m/s²]

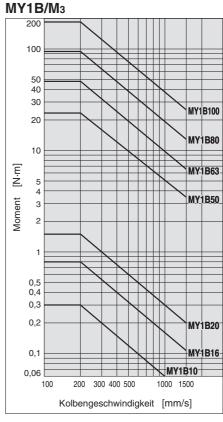
Anm. 4) 1,40a δ ist ein dimensionsloser Koeffizient zur Berechnung der Stoßkraft. Anm. 5) Mittlerer Lastkoeffizient (= $\frac{1}{3}$): Dieser Koeffizient dient zur Ermittlung des Durchschnitts des max. Lastmoments beim Aufprall auf den Stopper unter Berücksichtigung der Kalkulation der

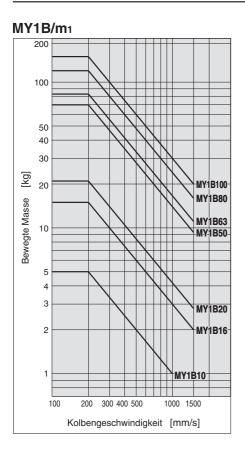

3. Nähere Angaben zur Modellauswahl finden Sie auf den Seiten 12 und 13.

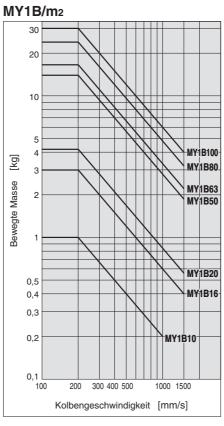
maximales erlaubtes Moment

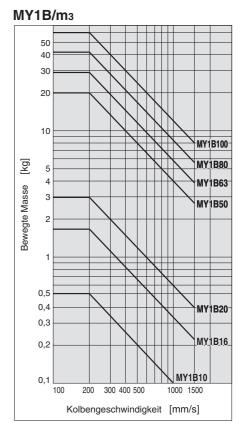
Wählen Sie ein Moment, das innerhalb der in den Grafiken gezeigten Betriebsbereichsgrenzen liegt. Beachten Sie, dass der Wert der max. zulässigen Last manchmal überschritten werden kann, auch wenn er innerhalb der in den Grafiken gezeigten Grenzwerte liegt. Überprüfen Sie deshalb auch die zulässige Last für die gewählten Betriebsbedingungen.


Maximale bewegte Masse


Wählen Sie eine Last, die innerhalb des in den Grafiken gezeigten Betriebsbereichs liegt. Beachten Sie, dass der Wert für das maximal zulässige Moment, selbst bei einem Betrieb innerhalb der in den Grafiken gezeigten Grenzwerte, manchmal überschritten werden kann. Überprüfen Sie deshalb auch das zulässige Moment für die gewählten Betriebsbedingungen.





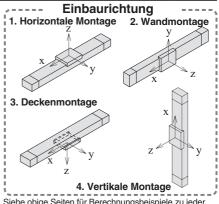

MY1B/M₁ 500 400 300 200 100 MY1B100 50 40 30 MY1B80 MY1B63 20 N m MY1B50 Moment 5 3 2 MY1B20 0,5 0,4 MY1B16 0,3 0,2 MY1B10 0,1 300 400 500 Kolbengeschwindigkeit [mm/s]

Serie MY1B Modellauswahl

Wählen Sie das für Ihre Anwendung am besten geeignete Modell der Serie MY1B gemäß der folgenden Vorgehensweise.

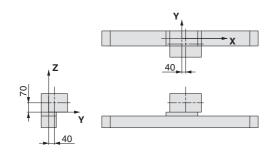
Berechnung des Belastungsgrads der Führung

1 Betriebsbedingungen -


ZylinderMY1B50-500 Mittlere Betriebsgeschwindigkeit \Im a 300 mm/s

Einbaurichtung Horizontale Montage

Dämpfung------ pneumatische Dämpfung


(δ = 1/100) W: Werkstück (5 kg)

MY1B50-500

Siehe obige Seiten für Berechnungsbeispiele zu jeder Einbaurichtung.

2 Lastanbau

Werkstückmasse und Schwerpunkt

Werkstück- Nr.		Schwerpunkt					
	Masse m	X-Achse	Y-Achse	Z-Achse			
W	5 kg	40 mm	40 mm	70 mm			

3 Berechnung des Belastungsgrads für statische Last -

m₁: Masse

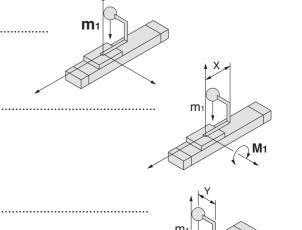
m₁ max (aus 1 der Grafik MY1B/m₁) = 47 kg······

Belastungsgrad $OL_1 = m_1/m_1 max = 5/47 = 0,11$

M₁: Moment

 M_1 max (aus 2 der Grafik MY1B/ M_1) = 52 N·m······

 $M_1 = m_1 \times g \times X = 5 \times 9.8 \times 40 \times 10^{-3} = 1.96 \text{ N} \cdot \text{m}$


Belastungsgrad $O(2) = M_1/M_1 max = 1,96/52 = 0,04$

M₂: Moment

 M_2 max (aus 3 der Grafik MY1B/ M_2) = 6,2 N·m······

 $M_3 = m_1 \times g \times Y = 5 \times 9.8 \times 40 \times 10^{-3} = 1.96 \text{ N} \cdot \text{m}$

Belastungsgrad $Ol_3 = M_2/M_2 max = 1,96/6,2 = 0,32$

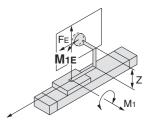
4 Berechnung des Belastungsgrads für dynamisches Moment -

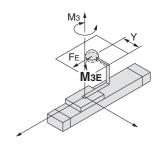
Äquivalente Last FE bei Aufprall

$$F_E = 1.4 \text{Va} \times \delta \times m \times g = 1.4 \times 300 \times \frac{1}{100} \times 5 \times 9.8 = 205.8 \text{ N}$$

M_{1E}: Moment

 M_{1E} max (aus 4 der Grafik MY1B/ M_{1} in der 1,4Va = 420 mm/s) = 37 N·m·······


$$M_{1E} = \frac{1}{3}x \text{ Fe x } \mathbf{Z} = \frac{1}{3}x \text{ 205,8 x 70 x } 10^{-3} = 4,81 \text{ N} \cdot \text{m}$$


Belastungsgrad $OL_4 = M_1E/M_1E max = 4,81/37 = 0,13$

МзE: Moment

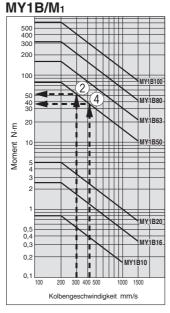
M₃E =
$$\frac{1}{3}$$
 x **F**_E x **Y** = $\frac{1}{3}$ x 205,8 x 40 x 10⁻³ = 2,75 N·m

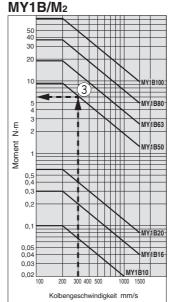
Belastungsgrad $OL_5 = M3E/M3E max = 2,75/11,0 = 0,25$

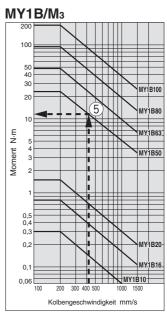
5 Summieren und Überprüfen der Belastungsgrade der Führung

$$\sum \alpha = \mathcal{O}_1 + \mathcal{O}_2 + \mathcal{O}_3 + \mathcal{O}_4 + \mathcal{O}_5 = \textbf{0.85} \leq \textbf{1}$$

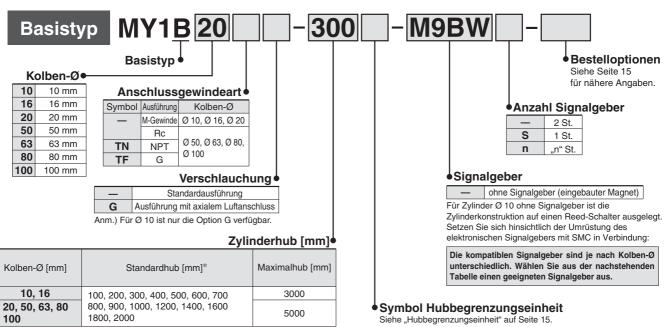
Die obige Berechnung ergibt einen zulässigen Wert; das ausgewählte Modell ist verwendbar.


Wählen Sie einen separaten Stoßdämpfer.


Ergibt die Summe der Belastungsgrade $\Sigma\alpha$ in der obigen Formel einen Wert größer 1, ziehen Sie eine geringere Geschwindigkeit, einen größeren Kolben- \emptyset oder eine andere Produktserie in Betracht.


Bewegte Masse

Zulässiges Moment


Kolbenstangenloser Bandzylinder Basistyp

Serie MY1B

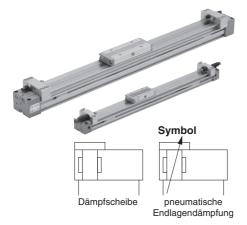
Ø 10, Ø 16, Ø 20, Ø 50, Ø 63, Ø 80, Ø 100

Bestellschlüssel

Für Kolben-Ø 25, 32 und 40 siehe Katalog auf www.smc.eu.

^{*} Hübe können von einem Mindesthub von 1 mm in 1-mm-Schritten bis zur max. Hublänge angefertigt werden. Bei einem Hub kleiner oder gleich 49 mm ist das Luftdämpfungsvermögen vermindert und es können nicht mehrere Signalgeber montiert werden. Beachten Sie diesen Punkt. Geben Sie außerdem für Hübe über 2000 mm "-XB11" am Ende der Bestellnummer an. Siehe "Bestelloptionen" für Details.

Verwendbare Signalgeber/Siehe Seiten 107 bis 117 für nähere Informationen zu Signalgebern.


Aus-		Elektrischer	zeige	Verdrahtung	L	astspannu	ing	S	ignalgel	permodell	Anschl	usskal	elläng	e [m]	vorver-			
führung	Sonderfunktion	Eingang	Betriebsan	(Ausgang)	С	DC AC		senkr Ø 10 bis Ø 20		gerade Ø 10 bis Ø 20 Ø 50 bis Ø 100	0,5	1 (M)	3 (L)	5 (Z)	drahteter Stecker	zulässi	ge Last	
	Diagnoseanzeige (2-farbig) Einge-gossene Kabel			3-Draht (NPN)				M9N [Y69		M9N** [Y59A]	•	• [—]	•	0	0	10.0		
ē				3-Draht (PNP)		5 V, 12 V		M9P		M9P** [Y7P]	•	● [—]	•	0	0	IC-Steuerung		
Signalgeber				zweidraht		12 V		M9B [Y69		M9B** [Y59B]	•	● [—]	•	0	0	_		
			3-Draht (NPN)		- V 40 V	5 V, 12 V		M9NV [Y7N		M9NW** [Y7NW]	•	● [—]	•	0	0	10.01		
scher		gossene	gossene ja Kabel -	3-Draht (PNP)	24 V		_	M9PV [Y7P		M9PW** [Y7PW]	•	● [—]	•	0	0	IC-Steuerung	Relais, SPS-	
elektronischer		Raboi			zweidraht		12 V			M9BV [Y7B		M9BW** [Y7BW]	•	• [—]	•	0	0	_
elek				3-Draht (NPN)		5 V, 12 V		M9N [—	AV ** -]	M9NA *** [—]	0	0	•	0	0	10.01		
	wasserfest (2-farbig)			3-Draht (PNP)				M9P	AV ** -]	M9PA ‡† [—]	0	0	•	0	0	IC-Steuerung		
	(3 - 3)			zweidraht		12 V		M9B [-	AV ** -]	M9BA *** [Y7BA]	0	0	•	0	0	_		
Reed- Schalter		Einge- gossene	ja	3-Draht (entspricht NPN)	_	5 V	_	A96V	_	A96 Z76	•	_	•	_	_	IC-Steuerung	_	
Sch		Kabel	nein	zweidraht	24 V	12 V	100 V max. 100 V	A93V*2 A90V		A93 Z73 A90 Z80	•	-	•	_		IC-Steuerung	Relais, SPS-	

- *1 Wasserfeste Signalgeber können auf den o. g. Modellen montiert werden, in diesem Fall kann SMC jedoch die Wasserfestigkeit nicht garantieren. Setzen Sie sich bei Verwendung wasserfester Modelle mit den o.g. Bestellnummer mit SMC in Verbindung.
- *2 Das Anschlusskabel mit 1 m ist nur mit der Ausführung D-A93 verwendbar.
- * Symbole für Anschlusskabellänge: 0,5 m Beispiel: M9NW 1 m M Beispiel: M9NWM
 - 3 m L Beispiel: M9NWL 5 m Z Beispiel: M9NWZ
- ** Elektronische Signalgeber mit der Markierung "O" werden auf Bestellung gefertigt.
- ** Um Signalgeber (Ausführung M9) auf Zylindern mit Ø 63 bis Ø 100 umzurüsten, sind gesonderte Signalgeberhalter (BMG2-012) erforderlich.
- ** D-M9□□□ kann nicht auf Ø 50 montiert werden. Wählen Sie Signalgeber mit Befestigungselement
- * Neben den o.g. Signalgebern können verschiedene andere verwendet werden. Weitere Einzelheiten finden Sie auf Seite 115.
- * Signalgeber werden mitgeliefert (nicht montiert).

Kolbenstangenloser Bandzylinder Basistyp

Serie MY1B

Bestelloptionen: Technische Daten (Nähere Angaben finden Sie auf den Seiten 118 bis 120.)

Symbol	Technische Daten
-X168	Einschraubgewinde
-XB11	Langhub-Ausführung
-XB22	Stoßdämpfer sanft dämpfende Ausführung Serie RJ
-XC67	NBR-Beschichtung im Staubschutzband
20-	Kupferfrei

Technische Daten

Kolbe	n-Ø [mm]	10	16	20	50	63	80	100			
Medium	1	Druckluft									
Wirkung	gsweise	doppeltwirkend									
Betriebso	druckbereich	0,2 bis 0,8 MPa	0,15 bis	0,8 MPa		0,1 bis (),8 MPa				
Prüfdru	ck			1,2	MPa						
	ungs- und emperatur	5 bis 60 °C									
Dämpfu	ng	Dämpfscheibe pneumatische Endlagendämpfung									
Schmie	rung		let	oensdaue	rgeschmi	ert					
Hubtolera	nz	max. 1000 1001 bis 3000	max. 1000 +1.8 1001 bis 3000+2.8 bi				bis 2700 ^{+1,8} , 2701 bis 5000 ^{+2,8}				
Luft- anschluss-	Anschluss vorn/seitlich	M5 :	x 0,8		Rc	3/8	Rc	1/2			
größe	Ausgang unten		4	Ø	10	Ø	18				

Kolbengeschwindigkeit

Kolber	n-Ø [mm]	10	16, 20, 50 bis 100		
ohne Hubbegrenzungseinheit		100 bis 500 mm/s	100 bis 1000 mm/s		
Hubbegren-	Einheit A	100 bis 200 mm/s	100 bis 1000 mm/s ⁽¹⁾		
zungseinheit	Einheit L und Einheit H	100 bis 1000 mm/s	100 bis 1500 mm/s (2)		

Anm. 1) Beachten Sie, dass die D\u00e4mpfungskapazit\u00e4t abnimmt, wenn der Hubeinstellbereich durch Einstellen des Anschlagbolzens vergr\u00f6\u00dfert wird. Wird der auf S. 18 angegebene D\u00e4mpfungshubbereich \u00fcberschritten, sollte die Kolbengeschwindigkeit 100 bis 200 mm pro Sekunde betragen.

überschritten, sollte die Kolbengeschwindigkeit 100 bis 200 mm pro Sekunde betragen.

Anm. 2) Bei der Ausführung mit zentralem Luftanschluss beträgt die Kolbengeschwindigkeit 100 bis 1000 mm/s.

Anm. 3) Betreiben Sie den Zylinder mit einer Geschwindigkeit innerhalb des Bereichs der Dämpfungskapazität.

Siehe Seite 17.

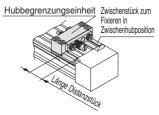
Technische Daten Hubbegrenzungseinheit

Kolben-Ø [mm]	1	10 16			20				
Einheitssymbol		Α	Н	Α	A L		Н			
Konfiguration Stoßdämpfermodo	ell	Mit Anschlagbolzen	RB 0805 + Mit Anschlagbolzen	Mit Anschlagbolzen	Mit Anschlagbolzen	RB 0806 + Mit Anschlagbolzen	RB 1007 + Mit Anschlagbolzen			
Hubeinstellbereich	ohne Distanzstück	0 bis -5		0 bis -5,6		0 bis -6				
mit Zwischenstück	mit kurzem Zwischenstück			-5,6 bis -11,2		-6 bis -12				
[mm]	mit langem Zwischenstück	_	_	-11,2 bis -16,8	-12 bis -18					

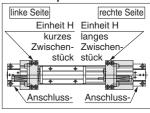
Anm.) Für Ø 10 ist kein Zwischenstück erhältlich.

Symbol Hubbegrenzungseinheit

						rechte	Hubbegr	enzungs	einheit			
			ohne	A: Mit A	Anschlag	bolzen		lämpfer für ge rer Anschlagb		H: mit Stoßdämpfer für schwere Lasten + einstellbarer Anschlagbolzen		
			Einheit		mit kurzem Zwischen- stück	mit langem Zwischen- stück		mit kurzem Zwischen- stück	mit langem Zwischen- stück		mit kurzem Zwischen- stück	mit langem Zwischen- stück
	_ ohne Einheit		_	SA	SA6	SA7	SL	SL6	SL7	SH	SH6	SH7
hhedrenzundseinheit	A: Mit Anschlagbolzen		AS	Α	AA6	AA7	AL	AL6	AL7	AH	AH6	AH7
		mit kurzem Zwischenstück	A6S	A6A	A6	A6A7	A6L	A6L6	A6L7	A6H	A6H6	A6H7
20		mit langem Zwischenstück	A7S	A7A	A7A6	A7	A7L	A7L6	A7L7	A7H	A7H6	A7H7
202	L: Mit Stoßdämp	fer für geringe Lasten +	LS	LA	LA6	LA7	L	LL6	LL7	LH	LH6	LH7
Sore	einstellbarer Anschlagbolzen	mit kurzem Zwischenstück	L6S	L6A	L6A6	L6A7	L6L	L6	L6L7	L6H	L6H6	L6H7
h	Anschlagbolzen	mit langem Zwischenstück	L7S	L7A	L7A6	L7A7	L7L	L7L6	L7	L7H	L7H6	L7H7
륲		H: Mit Stoßdämpfer für schwere Lasten +		HA	HA6	HA7	HL	HL6	HL7	Н	HH6	HH7
linke	einstellbarer	mit kurzem Zwischenstück	H6S	H6A	H6A6	H6A7	H6L	H6L6	H6L7	Н6Н	Н6	H6H7
=	Anschlagbolzen	mit langem Zwischenstück	H7S	H7A	H7A6	H7A7	H7L	H7L6	H7L7	H7H	H7H6	H7


^{*} Die Zwischenstücke fixieren die Hubbegrenzungseinheit in Zwischenhubposition.

Stoßdämpfer für die Einheiten L und H


Modell	Hubbe-	Kolben-Ø [mm]			
Modeli	grenzungs- einheit	10	20		
Standard (Stoßdämpfer/	L	_	RB0806		
RB Serie)	Н	RB0805	RB1007		
Stoßdämpfer/ sanft dämpfende Ausführung	L	_	RJ0806H		
Serie RJ montiert (-XB22)	Н	RJ0805	RJ1007H		

^{*} Die Lebensdauer des Stoßdämpfers entspricht je nach Betriebsbedingungen nicht der Lebensdauer der MY1B-Zylinder. Entnehmen Sie die Austauschintervalle den produktspezifischen Sicherheitshinweisen der Serie RB.

Montagezeichnung Hubbegrenzungseinheit

Anbaubeispiel H6H7

Technische Daten Stoßdämpfer

- Commodition Date: Community of						
Mod	RB 0805	RB 0806	RB 1007			
max. Energieaufnahme [J]		1,0	2,9	5,9		
Hubdämpfung [mm]		5	6	7		
max. Aufprallgeschwindigkeit [mm/s]		1000	1500	1500		
max. Schaltfrequenz [Zyklus/min]		80	80	70		
Federkraft [N]	ausgefahren	1,96	1,96	4,22		
reuerkidit [N]	eingefahren	3,83	4,22	6,86		
Betriebstemperati	urbereich [°C]		5 bis 60			

^{*} Der Hubeinstellbereich gilt für eine Seite bei Montage auf einem Zylinder.

^{*} Stoßdämpfer/sanft dämpfende Serie RJ montiert (-XB22) als Bestelloption erhältlich.

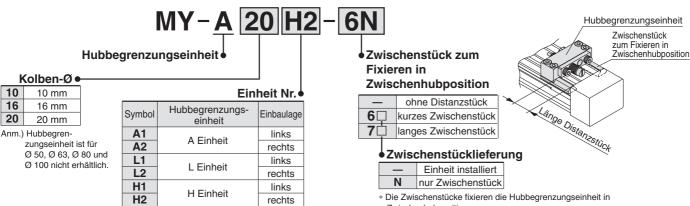
Serie MY1B

Theoretische Leistung

								[N]
Kolben-Ø	Kolbenfläche			Betriel	osdruck	[MPa]		
[mm]	[mm ²]	0,2	0,3	0,4	0,5	0,6	0,7	0,8
10	78	15	23	31	39	46	54	62
16	200	40	60	80	100	120	140	160
20	314	62	94	125	157	188	219	251
50	1962	392	588	784	981	1177	1373	1569
63	3115	623	934	1246	1557	1869	2180	2492
80	5024	1004	1507	2009	2512	3014	3516	4019
100	7850	1570	2355	3140	3925	4710	5495	6280

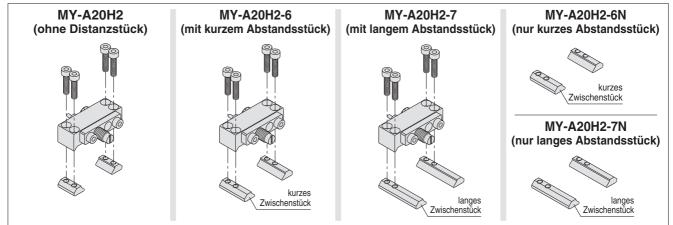
Anm.) Theoretische Zylinderkraft [N] = Druck [MPa] x Kolbenfläche [mm²]

Gewicht


							[kg]
Kolben-Ø	Basisge- wicht	Gewicht je	Gewicht der beweg-	Gewicht des Stützelements (pro Set)	Hubbe	Rewicht de grenzungs je Einheit	seinheit
[111111]	WICHT	50 mm Hub	lichen Teile	Typ A und B	Gewicht Einheit A	Gewicht Einheit L	Gewicht Einheit H
10	0,15	0,04	0,03	0,003	0,01	_	0,02
16	0,61	0,06	0,07	0,01	0,04	_	_
20	1,06	0,10	0,14	0,02	0,05	0,05	0,10
50	7,78	0,44	1,40	0,04	_	_	_
63	13,10	0,70	2,20	0,08	_	_	_
80	20,70	1,18	4,80	0,17	_		_
100	35,70	1,97	8,20	0,17	_	_	_

Berechnung: (Beispiel) MY1B20-300A

- Basisgewicht1,06 kg
- Zylinderhub ------Hub 300
- zusätzliches Gewicht ·····0,10 kg/Hub 50 + 2 x Einheit A $0.10 \text{ kg} \times 300/50 + 2 \times 0.05 \text{ kg} = 0.7 \text{ kg}$
- Gewicht1,76 kg


Option

Bestellnummer Hubbegrenzungseinheit

- Anm. 1) Für nähere Angaben zum Einstellbereich
- Anm. 2) Einheiten A und H nur für Ø 10, Einheit A nur für Ø 16
- Zwischenhubposition.
- * Die Zwischenstücke werden für ein 2-er Set geliefert. Anm.) Für Ø 10 ist kein Zwischenstück erhältlich.

Stückliste

Bestellnummer Stützelement

Kolben-Ø [mm] Ausführung	10	16	20	50	63	80	100
Stützelement A	MY-S10A	MY-S16A	MY-S20A	MY-S32A	MY-S50A	MY-S	S63A
Stützelement B	MY-S10B	MY-S16B	MY-S20B	MY-S32B	MY-S50B	MY-S	S63B

Für weitere Informationen zu Abmessungen usw. siehe Seite 28.

Ein Stützelement-Set enthält jeweils ein Element für die linke und für die rechte Seite.

Dämpfungskapazität

Auswahl der Dämpfung

<Elastische Dämpfung>

Die Serie MY1B10 ist standardgemäß mit elastische Dämpfung ausgestattet. Da der Dämpfungshub der elastische Dämpfung

Da der Dämpfungshub der elastische Dämpfung kurz ist, sollte ein externer Stoßdämpfer installiert werden, wenn der Hub mit einer A-Einheit eingestellt wird.

<Pneumatische Dämpfung>

Die kolbenstangenlosen Bandzylinder sind standardgemäß mit einer pneumatischen Dämpfung ausgestattet. (Außer Ø 10)

Der Mechanismus der pneumatischen Dämpfung dient zur Vermeidung eines zu starken Aufpralls des Kolbens am Hubende bei hohen Geschwindigkeiten. Die pneumatische Dämpfung dient nicht dazu, den Kolben zum Hubende hin abzubremsen.

Die von der pneumatischen Dämpfung absorbierbaren Last- und Geschwindigkeitsbereiche werden in den Grafiken gezeigt.

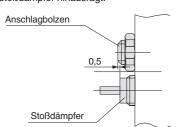
<Hubeinstelleinheit mit Stoßdämpfer>

Verwenden Sie diese Einheit, wenn Sie den Zylinder mit einer Last oder Geschwindigkeit betreiben, die die Grenzwerte der pneumatischen Dämpfung überschreiten oder wenn eine Dämpfung erforderlich ist, weil der Zylinderhub aufgrund der Hubeinstellung außerhalb des effektiven Dämpfungshubbereichs der pneumatischen Dämpfung liegt.

L-Einheit

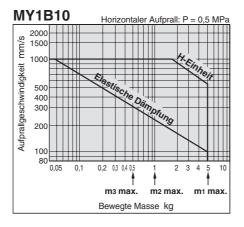
Verwenden Sie diese Einheit, wenn eine Dämpfung außerhalb des effektiven Dämpfungsbereichs der pneumatischen Dämpfung erforderlich ist, selbst wenn die Last und die Geschwindigkeit innerhalb der Grenzwerte der pneuma-

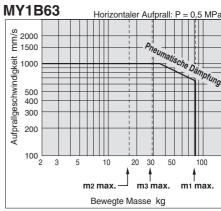
tischen Dämpfung liegen oder wenn der Zylinder in einem Last- und Geschwindigkeitsbereich betrieben wird, der über den Grenzwerten der pneumatischen Dämpfung und unterhalb der der L-Einheit liegt

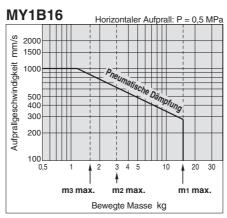

H-Einheit

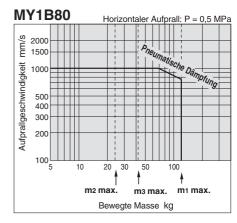
Verwenden Sie diese Einheit, wenn der Zylinder in einem Last- und Geschwindigkeitsbereich betrieben wird, der über den Grenzwerten der L-Einheit und unter denen der H-Einheit liegt.

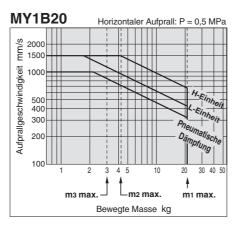
Achtung

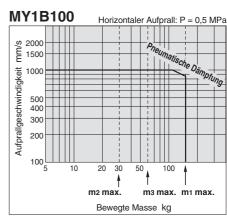

Beachten Sie die unten stehende
 Abbildung, wenn der Anschlagbolzen
zur Hubeinstellung verwendet wird.

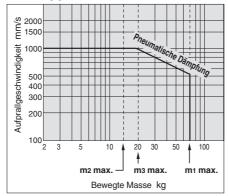

Die Dämpfungskapazität nimmt drastisch ab, wenn der effektive Hub des Stoßdämpfers aufgrund der Hubeinstellung verkürzt wird. Ziehen Sie den Anschlagbolzen in der Position fest, in der er ca. 0,5 mm über den Stoßdämpfer hinausragt.



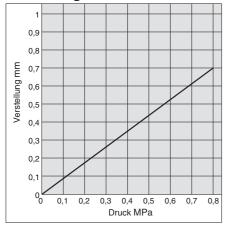

 Der Stoßdämpfer darf nicht zusammen mit der pneumatischen Dämpfung eingesetzt werden.


Dämpfungskapazität der elastischen Dämpfung, der pneumatischen Dämpfung und der Hubeinstelleinheiten





MY1B50



Dämpfungskapazität

Pneumatischer Dämpfungshub [mm]

Kolben-Ø [mm]	Dämpfungshub	
16	12	
20	15	
50	30	
63	37	
80	40	
100	40	

Elastische Dämpfscheibe (nurØ 10) Positiver Hub von einer Seite infolge des Drucks

Anzugsdrehmoment für Hub Einstellung Haltebolzen der Einheit _[N·m]

Kolben-Ø [mm]	Einheit	Anzugsmoment	
10	Α	0.4	
10	Н	0,4	
16	Α	0,7	
	Α		
20	L	1,8	
	Н		

Anzugsmoment für Hubbegrenzung Haltebolzen für Verschlussplatte

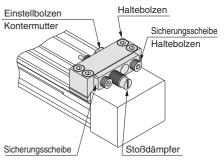
		[]
Kolben-Ø [mm]	Einheit	Anzugsmoment
20	Н	1,2

Berechnung der Energieaufnahme für Hubbegrenzungseinheit

mit Stoßdämpfer [N·m]					
	horizontaler Aufprall	vertikal (abwärts)	vertikal (aufwärts)		
Aufprallart	<u>m</u> <u>s</u>	U m	s t		
Kinetische Energie		$\frac{1}{2}$ m· v^2			
Schubkraft E 2	F⋅s	Fs + m·g·s	Fs – m⋅g⋅s		
Energieaufnahme E		E1 + E2			

Symbol

- U: Geschwindigkeit des aufprallenden Objekts [m/s]
- **F**: Zylinderschub [N]
- s: Stoßdämpferhub (m)
- m: Gewicht des aufprallenden Objekts [kg]
- g: Erdbeschleunigung (9,8 m/s²)
- Anm.) Die Geschwindigkeit des aufprallenden Objekts wird zum Zeitpunkt des Aufpralls am Stoßdämpfer gemessen.


ASicherheitshinweise

Produktspezifische Sicherheitshinweise

Achtung

Achten Sie darauf, sich nicht die Hände im Gerät einzuklemmen.

 Bei Verwendung eines Produkts mit Hubbegrenzungseinheit verringert sich der Raum zwischen dem Schlitten und der Hubbegrenzungseinheit am Hubende, so dass die Hände eingeklemmt werden könnten. Bringen Sie deshalb eine Schutzabdeckung an, um einen direkten Kontakt auszuschließen.

Befestigung der Einheit

Die Einheit kann durch gleichmäßiges Anziehen der vier Haltebolzen fixiert werden.

Achtung

Befestigen Sie die Hubbegrenzungseinheit nicht in einer Zwischenposition.

Wenn die Hubbegrenzungseinheit in einer Zwischenposition befestigt wird, können, abhängig von der beim Aufprall frei werdenden Energie, Slip-Effekte auftreten. In solchen Fällen wird die Verwendung einer Hubbegrenzungseinheit zur Sicherung der Zwischenposition empfohlen.

(außer Ø 10)

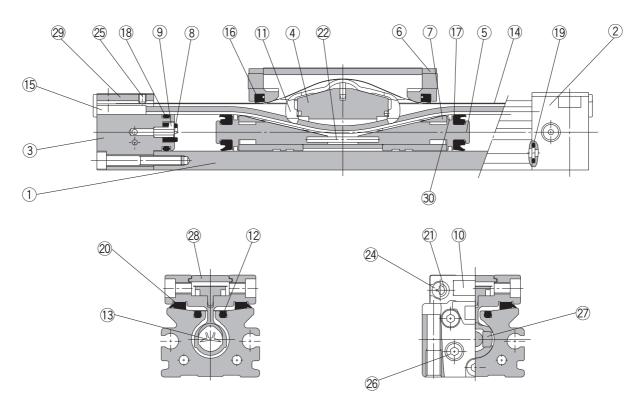
(Für andere Längen siehe "Hubbegrenzungseinheit Anzugsmoment für Haltebolzen".)

Hubeinstellung mit Einstellbolzen

Lösen Sie die Kontermutter des Anschlagbolzens und stellen Sie dann den Hub von der Seite der Verschlussplatte aus mit einem Schraubenschlüssel ein. Ziehen Sie die Kontermutter erneut fest.

Hubeinstellung mit Stoßdämpfer

Lösen Sie die zwei Haltebolzen der Verschlussplatte und stellen Sie dann den Hub durch Drehen des Stoßdämpfers ein. Ziehen Sie anschließend die Haltebolzen der Verschlussplatte gleichmäßig fest, um den Stoßdämpfer zu fixieren.


Achten Sie darauf, die Haltebolzen nicht übermäßig festzuziehen. (Außer Einheit L Ø 10 und Ø 20) (Siehe "Anzugsmoment der Haltebolzen der Hubbegrenzungseinheit-Verschlussplatte".)

Anm.)

Durch das Festziehen der Haltebolzen der Verschlussplatte kann diese leicht durchgebogen werden. Dies hat jedoch keinerlei Auswirkung auf den Stoßdämpfer und die Funktion der Platte.

Konstruktion: Ø 10

Ausführung mit axialem Luftanschluss: MY1B10G

Stückliste

Nr.	Bezeichnung	Material	Anm.
1	Zylinderrohr	Aluminiumlegierung	harteloxiert
2	Zylinderdeckel WR	Aluminiumlegierung	lackiert
3	Zylinderdeckel WL	Aluminiumlegierung	lackiert
4	Mitnehmer	Aluminiumlegierung	harteloxiert
5	Kolben	Aluminiumlegierung	chromatiert
6	Endabdeckung	Spezialkunststoff (PBT)	
_ 7	Kolbenführungsband	Spezialkunststoff (PBT)	
8	Dämpfscheibe	Polyurethankautschuk	
9	Haltevorrichtung	rostfreier Stahl	
10	Anschlag	Kohlenstoffstahl	vernickelt
11	Riementrenner	Spezialkunststoff (PBT)	
12	Dichtung Magnet	Gummi (magnetisch)	

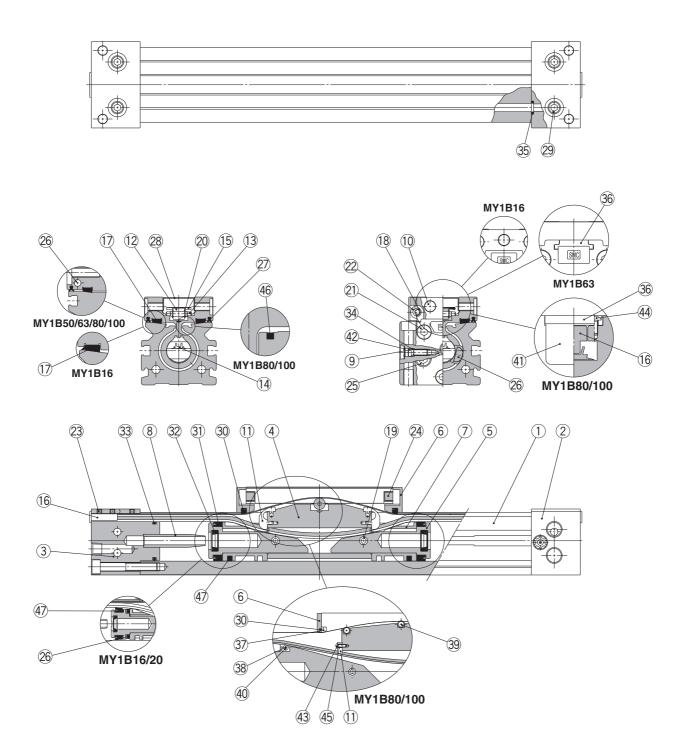
Nr.	Bezeichnung	Material	Anm.
15	Riemenklemmung	Spezialkunststoff (PBT)	
20	Lager	Spezialkunststoff (PBT)	
21	Distanzstück	Chrommolybdänstahl	vernickelt
22	Spannstift	rostfreier Stahl	
23	Innensechskantschraube	Chrommolybdänstahl	vernickelt
24	Kopfklemmschraube	Kohlenstoffstahl	vernickelt
25	Gewindestift mit Schlitz	Kohlenstoffstahl	schwarz verzinkt und chromatiert
26	Innensechskantstopfen	Kohlenstoffstahl	vernickelt
27	Magnet	-	
28	Oberplatte	rostfreier Stahl	
29	Kopfplatte	rostfreier Stahl	
30	Filz	Filz	

Ersatzteile: Dichtsatz

Nr.	Bezeichnung	Menge	MY1B10
13	Dichtungsband	1	MY10-16A-Hub
14	Staubschutzband	1	MY10-16B- Hub
16	Abstreifer	2	
17	Kolbendichtung	2	MY1B10-PS
18	Zylinderrohrdichtung	2	WITTE 10-P3
19	O-Ring	4	

^{*} Die Dichtsätze bestehen jeweils aus den Artikeln (f), (7), (8) und (9). Die Dichtsätze enthalten einen Beutel mit Fett (10 g).

Wenn, ③ und ④ getrennt geliefert werden, ist ein Beutel mit Fett enthalten. (10 g per 1000 Hübe)


Mit folgender Bestellnummer können Sie Fett separat bestellen:

Bestellnummer Beutel mit Fett: GR-S-010 (10 g), GR-S-020 (20 g)

Serie MY1B

Konstruktion: Ø 16, Ø 20, Ø 50 bis Ø 100

MY1B16, 20, 50 bis 100

-MY1B16, 20, 50 bis 100

Stückliste

ວແ	ickliste		
Nr.	Bezeichnung	Material	Anm.
1	Zylinderrohr	Aluminiumlegierung	harteloxiert
2	Zylinderdeckel WR	Aluminiumlegierung	lackiert
3	Zylinderdeckel WL	Aluminiumlegierung	lackiert
4	Mitnehmer	Aluminiumlegierung	eloxiert
5	Kolben	Aluminiumlegierung	chromatiert
		Spezialkunststoff (PBT)	
6	Endabdeckung	Kohlenstoffstahl	vernickelt (Ø 80, Ø 100)
7	Kolbenführungsband	Spezialkunststoff (PBT)	
8	Dämpfungshülse	Aluminiumlegierung	eloxiert
9	Dämpfungseinstellschraube	Walzstahl	vernickelt
10	Anschlag	Kohlenstoffstahl	vernickelt
11	Riementrenner	Spezialkunststoff (PBT)	
12	Führungsrolle	Spezialkunststoff (PBT)	(Ø 16, Ø 20, Ø 50, Ø 63)
13	Führungsrollenwelle	rostfreier Stahl	(Ø 16, Ø 20, Ø 50, Ø 63)
16	Riemenklemmung	Spezialkunststoff (PBT)	
10	niemenkieminung	Aluminiumlegierung	chromatiert (Ø 80, Ø 100)
17	Lager	Spezialkunststoff (PBT)	
18	Distanzstück	rostfreier Stahl	(Ø 16, Ø 20, Ø 50, Ø 63)
19	Spannstift	Werkzeugstahl	
20	Sicherungsring Ausführung E	Kalt gewalzter Spezialstahl	(Ø 50, Ø 63)
21	Innensechskantschraube	Chrommolybdänstahl	vernickelt
22	Innensechskantschraube	Chrommolybdänstahl	vernickelt
23	Innen-	Chrommolybdänstahl	schwarz verzinkt und
	sechskantschraube	,	chromatiert/vernickelt
24	Durchgehende runde Passfeder	Kohlenstoffstahl	(Ø 16, Ø 20)
25	konischer Innensechskantstopfen	Kohlenstoffstahl	vernickelt

Nr.	Bezeichnung	Material	Anm.
26	Magnet	_	
28	Abdeckung oben	rostfreier Stahl	
29	konischer Innensechskantstopfen	Kohlenstoffstahl	vernickelt
36	Kopfplatte	Aluminiumlegierung	lackiert (Ø 63 bis Ø 100)
37	Rückführplatte	Spezialkunststoff (PBT)	(Ø 80, Ø 100)
38	Führungsrolle B	Spezialkunststoff (PBT)	(Ø 80, Ø 100)
39	Führungsrolle A	rostfreier Stahl	(Ø 80, Ø 100)
40	Führungsrollenwelle B	rostfreier Stahl	(Ø 80, Ø 100)
41	Seitendeckel	Aluminiumlegierung	harteloxiert (Ø 80, Ø 100)
42	Sicherungsring Ausführung CR	Federstahl	
43	Sechs-kantschraube	Chrommolybdänstahl	vernickelt (Ø 80, Ø 100)
44	Sechs-kantschraube	Chrommolybdänstahl	vernickelt (Ø 80, Ø 100)
45	Distanzstück B	rostfreier Stahl	(Ø 80, Ø 100)
46	Dichtung Magnet	Gummi (magnetisch)	(Ø 80, Ø 100)
47	Schmutzabstreifer	Spezialkunststoff (PBT)	(Ø 16, Ø 20, Ø 50, Ø 63)

Ersatzteile: Dichtsatz

Nr.	Bezeichnung	Menge	MY1B16	MY1B20
14	Dichtungsband	1	MY16-16C-Hub	MY20-16C-Hub
15	Staubschutzband	1	MY16-16B- Hub	MY20-16B-Hub
27	Abstreifer seitlich	2	_	MYB20-15CA7164B
34	O-Ring	2	KA00309	KA00309
34	O-hilly		(Ø 4 x Ø 1,8 x Ø 1,1)	(Ø 4 x Ø 1,8 x Ø 1,1)
30	Abstreifer	2		
31	Kolbendichtung	2		
32	Dämpfungsdichtung	2	MY1B16-PS	MY1B20-PS
33	Zylinderrohrdichtung	2		
35	O-Ring	4		

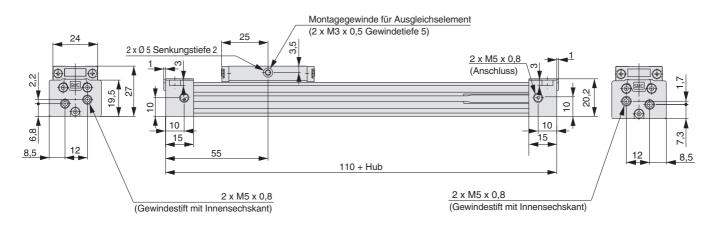
Nr.	Bezeichnung	Menge	MY1B50	MY1B63	MY1B80	MY1B100
14	Dichtungsband	1	MY50-16C-Hub	MY63-16A-Hub	MY80-16A-Hub	MY100-16A-Hub
15	Staubschutzband	1	MY50-16B-Hub	MY63-16B-Hub	MY80-16B- Hub	MY100-16B-Hub
27	Abstreifer seitlich	2	MYB50-15CA7165B	MYB63-15CA7166B	MYB80-15CK2470B	MYB100-15CK2471B
34	O Bing	2	KA00402	KA00777	KA00050	KA00050
34	O-Ring		(Ø 8,3 x Ø 4,5 x Ø 1,9)	_	_	
30	Abstreifer	2				
31	Kolbendichtung	2				
32	Dämpfungsdichtung	2	MY1B50-PS	MY1B63-PS	MY1B80-PS	MY1B100-PS
33	Zylinderrohrdichtung	2				
35	O-Ring	4				

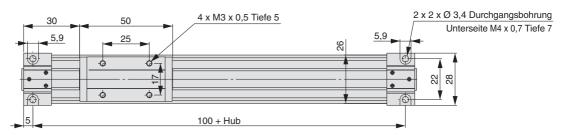
^{*} Die Dichtsätze bestehen jeweils aus den Artikeln ③, ③, ②, ③ und ⑤. Bestellen Sie den Dichtsatz entsprechend des jeweiligen Kolbendurchmessers.

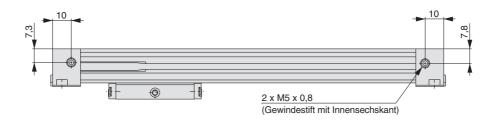
* Die Dichtsätze enthalten einen Beutel mit Fett (10 g).

Wenn, ④ und ⑤ getrennt geliefert werden, ist ein Beutel mit Fett enthalten. (10 g per 1000 Hübe)

Mit folgender Bestellnummer können Sie Fett separat bestellen: GR-S-010 (10 g), GR-S-020 (20 g)

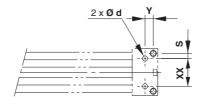


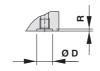

Anm.) Für MY1B16, 20, 50, 63 sind zwei Typen des Staubschutzbands erhältlich. Die Bestellnummer ist je nach


Oberflächenbehandlung der Innensechskanteinstellschraube unterschiedlich.

Einstellschraube 23: prüfen Sie bitte sorgfältig das korrekte Staubdichtband. A: Schwarz verzinkt → MY□□-16B-Hub, B: vernickelt → MY□□-16BW-Hub

MY1B10G — Hub


22

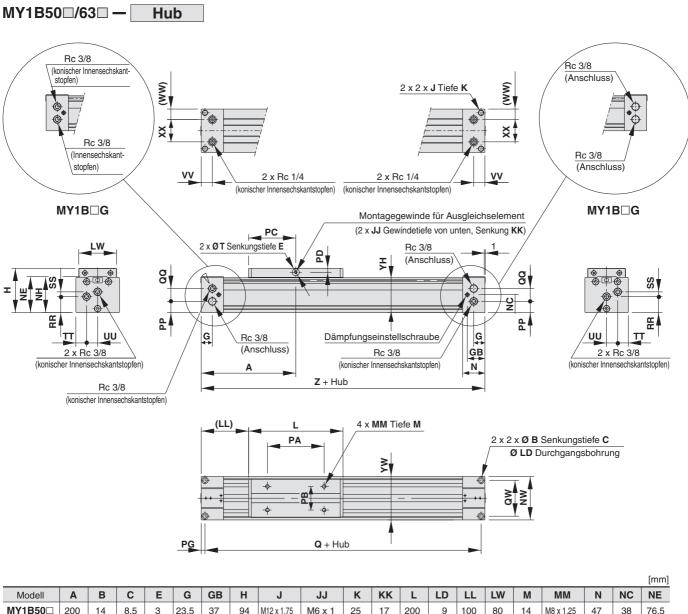

Standardausführung/Ausführung mit axialem Luftanschluss Ø 16, Ø 20

Für Varianten des axialen Luftsanschlusses siehe Seite 122.

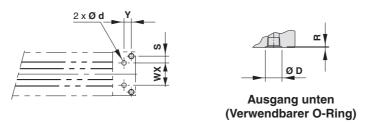
																						[mm]
Modell	NH	NW	PA	РВ	PC	PD	PG	PP	Q	QQ	QW	RR	SS	Т	TT	UU	VV	ww	XX	YH	YW	Z
MY1B16□	27	37	40	20	40	4,5	3,5	7,5	153	9	30	11	3	7	9	10,5	10	7,5	22	26	32	160
MY1B20□	33,5	45	50	25	50	5	4,5	11,5	191	11	36	14,5	5	8	10,5	12	12,5	10,5	24	32,5	40	200

Ausgang unten (Verwendbarer O-Ring)

Bohrungsgröße für zentralen Luftanschluss an der Unterseite


Modell	WX	Υ	S	d	D	R	Verwendbarer O-Ring
MY1B16□	22	6,5	4	4	8,4	1,1	06
MY1B20□	24	8	6	4	8,4	1,1	C6

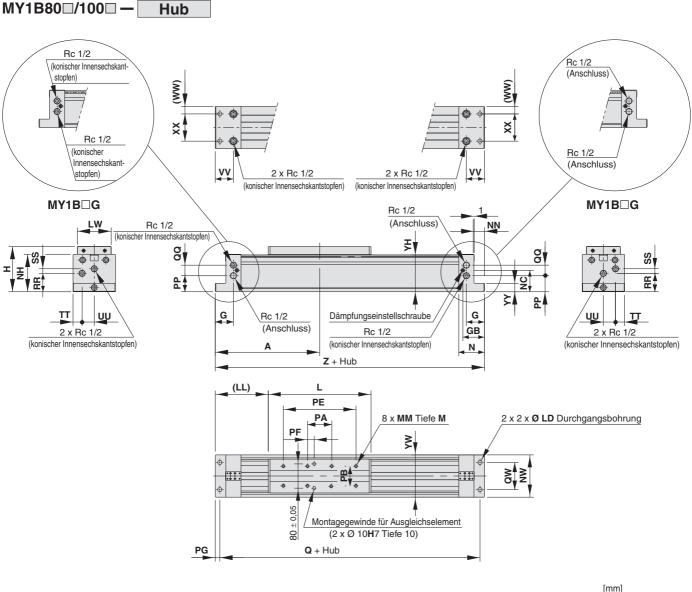
(Bearbeiten Sie die Montagefläche auf die oben stehenden Abmessungen [mm]).


Serie MY1B

Standardausführung/Ausführung mit axialem Luftanschluss Ø 50, Ø 63 Für Varianten des axialen Luftanschlusses siehe Seite 122.

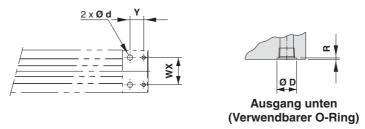
Modell	Α	В	С	Е	G	GB	Н	J	JJ	K	KK	L	LD	LL	LW	M	MM	N	NC	NE
MY1B50□	200	14	8,5	3	23,5	37	94	M12 x 1,75	M6 x 1	25	17	200	9	100	80	14	M8 x 1,25	47	38	76,5
MY1B63□	230	17	10,5	3	25	39	116	M14 x 2	M8 x 1,25	28	24	230	11	115	96	16	M8 x 1,25	50	51	100

																						[mm]
Modell	NH	NW	PA	РВ	PC	PD	PG	PP	Q	QQ	QW	RR	SS	Т	TT	UU	VV	ww	XX	ΥH	YW	Z
MY1B50□	75	92	120	50	100	8,5	8	24	384	27	76	34	10	15	22,5	23,5	23,5	22,5	47	74	92	400
MY1B63□	95	112	140	60	115	9,5	10	37,5	440	29,5	92	45,5	13,5	16	27	29	25	28	56	94	112	460


Bohrungsgröße für zentralen Luftanschluss an der Unterseite

Modell	WX	Υ	S	d	D	R	Verwendbarer O-Ring
MY1B50□	47	15,5	14,5	10	17,5	1,1	0.15
MY1B63□	56	15	18	10	17,5	1,1	C15

(Bearbeiten Sie die Montagefläche auf die oben stehenden Abmessungen [mm].)

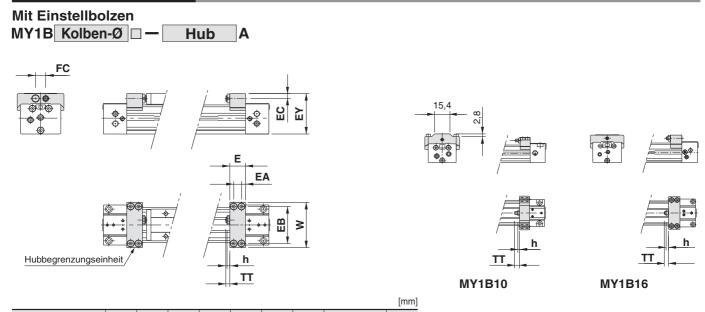


Standardausführung/Ausführung mit axialem Luftanschluss Ø 80, Ø 100 Für Varianten des axialen Luftanschlusses siehe Seite 122.

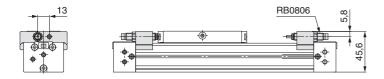
																		[mm]
Modell	Α	G	GB	Н	L	LD	LL	LW	M	MM	N	NC	NH	NN	NW	PA	PB	PE
MY1B 80□	345	60	71,5	150	340	14	175	112	20	M10 x 1,5	85	71	124	35	140	80	65	240
MY1B100□	400	70	79,5	190	400	18	200	140	25	M12 x 1,75	95	85	157	45	176	120	85	280

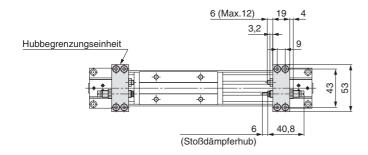
																	[mm]
Modell	PF	PG	PP	Q	QQ	QW	RR	SS	TT	UU	VV	ww	XX	YH	YW	YY	Z
MY1B 80□	22	15	53	660	35	90	61	15	30	40	60	25	90	122	140	28	690
MY1B100□	42	20	69	760	38	120	75	20	40	48	70	28	120	155	176	35	800

Bohrungsgröße für zentralen Luftanschluss an der Unterseite


Modell	WX	Υ	d	D	R	Verwendbarer O-Ring
MY1B 80□	90	45	18	26	1,8	P22
MY1B100□	120	50	18	26	1,8	F22

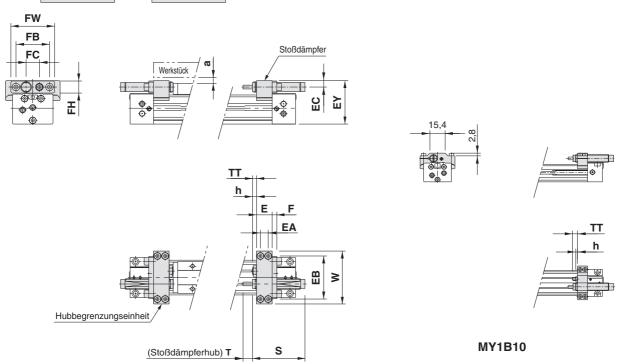
(Bearbeiten Sie die Montagefläche auf die oben stehenden Abmessungen [mm].)


Serie MY1B


Hubbegrenzungseinheit

verwendbarer Kolben-Ø	E	EA	EB	EC	EY	FC	h	TT	W
MY1B10	10	5	28	3,3	26,3		1,8	5 (Max. 10)	35
MY1B16	14,6	7	34,4	4,2	36,5		2,4	5,4 (Max. 11)	43
MY1B20	19	9	43	5,8	45,6	13	3,2	6 (Max. 12)	53

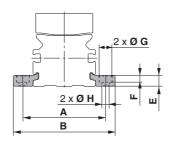
Mit Stoßdämpfer für geringe Lasten + Einstellbolzen MY1B20□ — Hub L

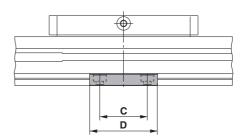


Hubbegrenzungseinheit

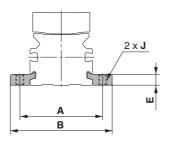
Mit Stoßdämpfer für schwere Lasten + Einstellbolzen

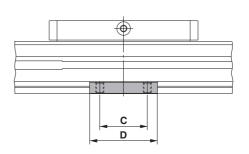
MY1B Kolben-Ø □ — Hub H


* Da die Abmessung EY der Einheit H größer ist als die obere Höhe des Schlittens (H-Abmessung), müssen Sie beim Anbau eines Werkstücks, welches die Gesamtlänge (Abmessung L) des Schlittens überschreitet, einen Freiraum mit min. der Abmessung "a" an der Werkstückseite vorsehen.


verwendbarer Kolben-Ø	E	EA	EB	EC	EY	F	FB	FC	FH	FW	h	S	Т	TT	W	Stoßdämpfermodell	а
MY1B10	10	5	28	5,5	29,8			8			1,8	40,8	5	5 (Max. 10)	35	RB0805	3,5
MY1B20	20	10	49	6,5	47,5	6	33	13	12	46	3,5	46,7	7	5 (Max. 11)	60	RB1007	2,5

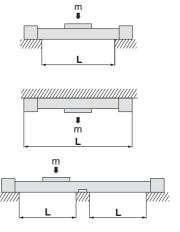
Serie MY1B

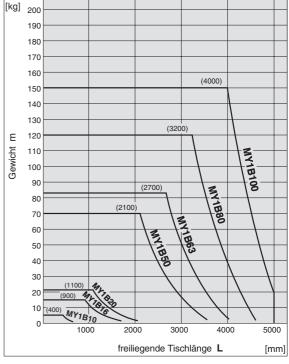

Befestigungselement


Befestigungselement A MY-S□A

Befestigungselement B MY-S□B

										[111111]
Modell	Verwendbarer Zylinder	Α	В	С	D	Е	F	G	Н	J
MY-S10 A	MY1B 10	35	43,6	12	21	3	1,2	6,5	3,4	M4 x 0,7
MY-S16 A	MY1B 16	43	53,6	15	26	4,9	3	6,5	3,4	M4 x 0,7
MY-S20 A	MY1B 20	53	65,6	25	38	6,4	4	8	4,5	M5 x 0,8
MY-S32 A	MY1B 50	113	131	45	64	11,7	6	11	6,6	M8 x 1,25
MY-S50 A	MY1B 63	136	158	55	80	14,8	8,5	14	9	M10 x 1,5
MY-S63 A	MY1B 80	170	200	70	100	10.0	10.5	17.5	44.5	M10 1 75
W 1-303 B	MY1B100	206	236	70	100	18,3	10,5	17,5	11,5	M12 x 1,75


^{*} Set beinhaltet zwei Elemente für rechts und links.

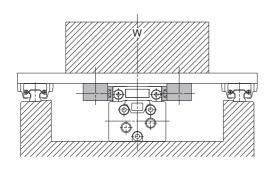

Hinweise zur Verwendung des Befestigungselements

Bei Betrieb mit Langhub kann eine Durchbiegung des Zylinderrohrs abhängig von dessen Eigengewicht und dem Werkstückgewicht auftreten. In diesem Fall sollte ein Befestigungselement in der Hubmitte eingesetzt werden. Die Länge (L) des Befestigungselements darf die in der Grafik rechts gezeigten Werte nicht überschreiten.

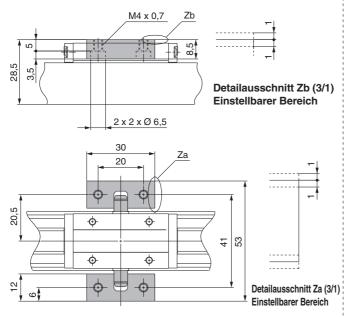
⚠ Achtung

- Bei ungenauer Bemessung der Montageflächen des Zylinders kann die Verwendung eines Befestigungselements zu einer verminderten Zylinderleistung führen. Achten Sie deshalb darauf, das Zylinderrohr bei der Montage zu nivellieren. Bei Betrieb mit Langhub unter Einwirkung von Vibrationen und Stößen wird der Einsatz eines Befestigungselements auch dann empfohlen, wenn dessen Länge außerhalb des in der Grafik gezeigten Bereichs liegt.
- 2. Die Befestigungselemente dienen nicht zur Montage.

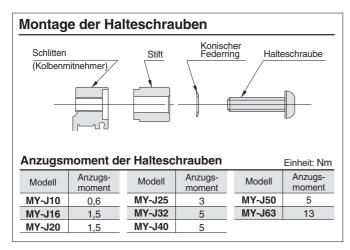
Ausgleichselement


Vereinfacht den Anschluss an andere Führungssysteme.

Verwendbarer Kolben-ø

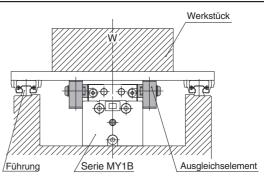

Ø 10

MY-J10

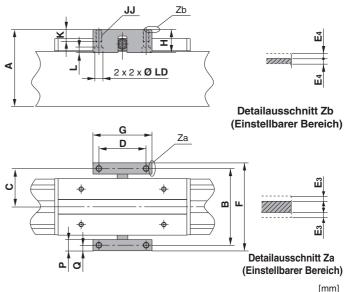

Anwendungsbeispiel

Montagebeispiel

* Set beinhaltet zwei Elemente für rechts und links.



Verwendbarer Kolben-ø


Ø 16, Ø 20

MY-J16/MY-J20

Anwendungsbeispiel

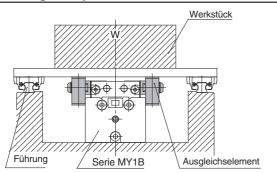
Montagebeispiel

										[mm]
Modell	Verwendbarer Zylinder	Α	ı	В	С	D	F		G	Н
MY-J16	MY1B16□	45	45		22,5	30	52		38	18
MY-J20	MY1B20□	55	5	52	26	35	59		50	21
Modell	Verwendbarer Zylinder	JJ		K	L	Р	Q	Ез	E4	LD
MY-J16	MY1B16□	M4 x 0	,7	10	4	7	3,5	1	1	6
MY-J20	MY1B20□	M4 x 0	.7	10	4	7	3.5	1	1	6

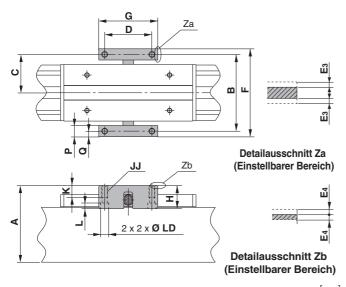
^{*} Set beinhaltet zwei Elemente für rechts und links.

MY-J10 bis 63 (1 set) Stückliste

Beschreibung	Anzahl		
Ausgleichselement	2		
Stift	2		
Konischer Federring	2		
Halteschraube	2		


Serie MY1B

Verwendbarer Kolben-ø


Ø 50, Ø 63

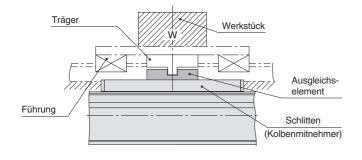
MY-J50/MY-J63

Anwendungsbeispiel

Montagebeispiel

										[mm]
Model	Verwendbarer Zylinder	Α	E	3	С	D	F		G	Н
MY-J50	MY1B50□	110	110		55	70	126	3	90	37
MY-J63	MY1B63□	131	10	30	65	80	149) 1	00	37
Model	Verwendbarer Zylinder	JJ		K	L	Р	Q	E 3	E4	LD
MY-J50	MY1B50□	M8 x 1,25		20	7,5	16	8	2,5	2,5	11
MY-J63	MY1B63□	M10 x	M10 x 1,5		9,5	19	9,5	2,5	2,5	14

^{*} Set beinhaltet zwei Elemente für rechts und links.


Ausgleichselement

Vereinfacht den Anschluss an andere Führungssysteme.

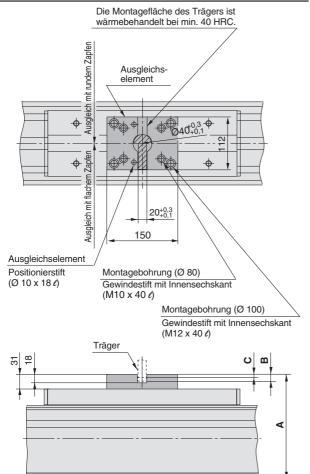
Verwendbarer Kolben-Ø

Ø 80, Ø 100

Anwendungsbeispiel

Sicherheitshinweise zum Ausgleichselement

\land Achtung


Vergewissern Sie sich, dass der Abweichungsbetrag von der externen Führung innerhalb des einstellbaren Bereichs liegt.

Die Verwendung des Ausgleichselements ermöglicht den Anschluss an eine externe Führung. Bei einer Kolbenstangenführung o. Ä. ist der Abweichungsbetrag allerdings groß, so dass das Ausgleichselement diesen möglicherweise nicht kompensieren kann.

Überprüfen Sie deshalb den Abweichungsbetrag und montieren Sie das Ausgleichselement innerhalb des einstellbaren Bereichs.

Verwenden Sie einen separaten Ausgleichsmechanismus, wenn der Abweichungsbetrag über dem einstellbaren Bereich liegt.

Montagebeispiel

Anzugsmoment der Innensechskant-

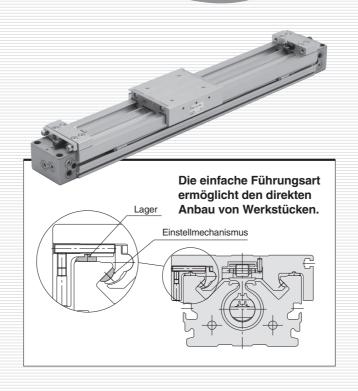
					schraube	Einheit: Nn
Modell	Verwendbarer Zylinder	Α	B (max.)	C (min.)	Modell	Anzugs- moment
MY-J 80	MY1B 80□	181	15	9	MY-J 80	25
MY-J100	MY1B100□	221	15	9	MY-J100	44

Anm.)• Der Träger kann mit einem flachen oder runden Zapfen vom Kunden montiert werden

- (gestrichelte Linien).

 "B" und "C" geben die zulässigen Montageabmessungen für den Träger an (flacher oder runder Zapfen).
- Achten Sie darauf, dass die Abmessungen des Trägers nicht die Funktion des Ausgleichsmechanismus beeinträchtigen.

MY-J80, 100 (1 set) Stückliste


Beschreibung	Anzahl			
Ausgleichselement	1			
Positionierstift	2			
Halteschraube	4			

Ausführung mit Gleitführung

Ø 16, Ø 20, Ø 25, Ø 32, Ø 40, Ø 50, Ø 63

Serie MY1M Vor Inbetriebnahme

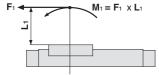
Max. zulässiges Moment/Max. zulässige Last

Mardall	Kolben-ø	Max. zulä	issiges Mon	nent [Nm]	Max. zulässige Last [kg]			
Modell	[mm]	M ₁	M 2	Мз	m 1	m 2	m 3	
	16	6,0	3,0	1,0	18	7	2,1	
	20	10	5,2	1,7	26	10,4	3	
	25	15	9,0	2,4	38	15	4,5	
MY1M	32	30	15	5,0	57	23	6,6	
	40	59	24	8,0	84	33	10	
	50	115	38	15	120	48	14	
	63	140	60	19	180	72	21	

Die obigen Werte sind die max. zulässigen Werte für das Moment und die bewegte Masse. Beachten Sie die jeweiligen Grafiken für das max. zulässige Moment und die max. zulässige Last für spezifische Kolbengeschwindigkeiten.

Max. zulässiges Moment

Wählen Sie ein Moment, das innerhalb des in den Grafiken gezeigten Betriebsbereichs liegt. Beachten Sie, dass der Wert der max. zulässigen Last manchmal überschritten werden kann, auch wenn er innerhalb der in den Grafiken gezeigten Grenzwerte liegt. Überprüfen Sie deshalb auch die zulässige Last für die gewählten Betriebsbedingungen.


Last [kg]



Moment [Nm]

<Berechnung des Belastungsgrads der Führung

- 1. Max. zulässige Last (1), statisches Moment (2), und dynamisches Moment (bei Aufprall am Anschlag) (3) müssen für die Auswahlberechnungen bestimmt werden.
- * Verwenden Sie zur Berechnung \mathbb{V} a (Durchschnittsgeschwindigkeit) für (1) und (2), und \mathbb{V} (Aufprallgeschwindigkeit \mathbb{V} = 1,4 \mathbb{V} a) für (3).
- Ermitteln Sie m max für (1) aus der Grafik der max. zulässigen Last (m₁, m₂, m₃) und Mmax für (2) und (3) aus der Grafik des max. zulässigen Moments (M₁, M₂, M₃).

Summe der Belastungsgrade $\Sigma \alpha =$	Bewegte Masse [m]	Statisches Moment [M] Anm. 1)	Dynamisches Moment [ME] Anm. 2)
der Führung	Max. zulässige Last [m max]	Zulässiges statisches Moment [Mmax]	Zulässiges dynamisches Moment [MEmax]

- Anm. 1) Durch die Last usw. erzeugtes Moment im Ruhezustand des Zylinders.
- Anm. 2) Durch die Stoßbelastung am Hubende erzeugtes Moment (bei Aufprall am Anschlag).
- Anm. 3) Abhängig von der Werkstückform können mehrere Momente auftreten. In diesem Fall entspricht die Summe der Belastungsgrade $(\Sigma \alpha)$ der Summe aller Momente.
- 2. Referenzformeln (Dynamisches Moment bei Aufprall)

Verwenden Sie folgende Formeln zur Berechnung des dynamischen Moments unter Berücksichtigung des Aufpralls am Anschlag.

m : Bewegte Masse [kg]

F : Kraft [N]

FE : Äquivalente Kraft zum Aufprall (Aufprall am Anschlag)

Va: Durchschnittsgeschwindigkeit [mm/s]

M : Statisches Moment [Nm]

υ: Aufprallgeschwindigkeit [mm/s]

L1: Abstand zum Last schwerpunkt [m]

M_E:Dynamisches Moment [N·m]

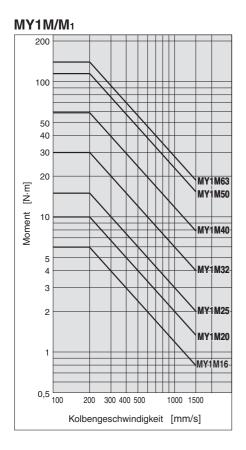
 δ : Dämpfungskoeffizient $\upsilon = 1,4\upsilon$ a Mit= 4/100

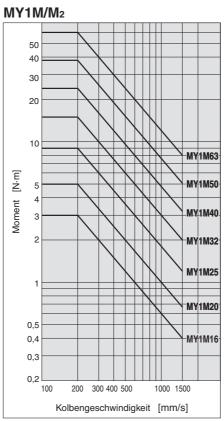
(MY1B10, MY1H10)

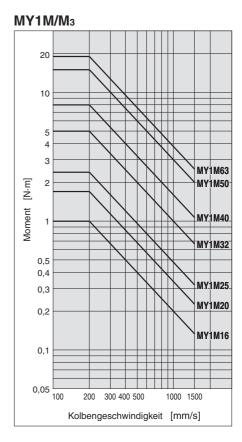
Mit pneumatischer Dämpfung = 1/100 Mit Stoßdämpfer = 1/100

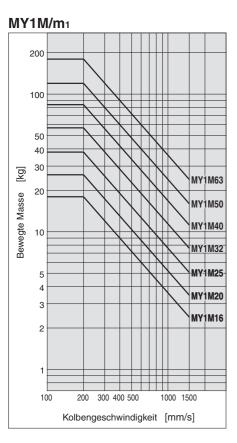
g: Erdbeschleunigung (9,8 m/s²)

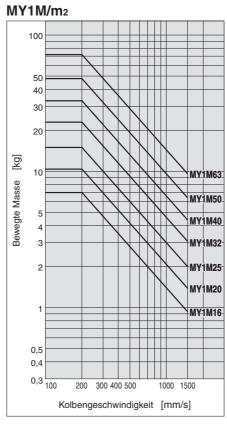
$$\begin{split} \boldsymbol{\upsilon} &= 1,\!4\upsilon a \, [mm/s] \,\, \text{Fe} = 1,\!4\upsilon a \! \cdot \! \delta \cdot \! m \! \cdot \! g \\ & \therefore \boldsymbol{M}_{\text{E}} = \frac{1}{3} \cdot \! F_{\text{E}} \cdot \! L_{1} = 4,\!57\upsilon a \delta m L_{1} \, [N \cdot m] \end{split}$$

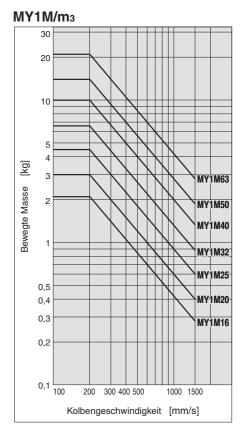

- Anm. 4) 1,4 $va\delta$ ist ein dimensionslaser Koeffizient zur Berechnung der Stoßkraft.
- Anm. 5) Mittlerer Lastkoeffizient (= 3): Dieser Koeffizient dient zur Ermittlung des Durchschnitts des max. Lastmoments beim Aufprall auf den Anschlag unter Berücksichtigung der Kalkulation der Lehensdauer.
- 3. Nähere Angaben zur Modellauswahl finden Sie auf den Seiten 36 und 37.

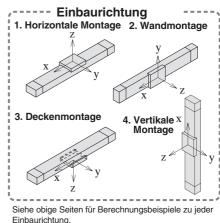

Max. zulässige Last


Wählen Sie eine Last, die innerhalb des in den Grafiken gezeigten Betriebsbereichs liegt. Beachten Sie, dass der Wert des max. zulässigen Moments manchmal über-schritten werden kann, auch wenn er innerhalb der in den Grafiken gezeigten Grenzwerte liegt. Überprüfen Sie deshalb auch das zulässige Moment für die gewählten Betriebsbedingungen.

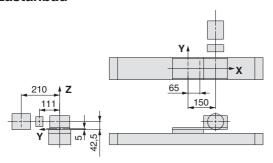







Serie MY1M

Modellauswahl


Wählen Sie das für Ihre Anwendung am besten geeignete Modell der Serie MY1M gemäß der folgenden Vorgehensweise.

Berechnung des Belastungsgrads der Führung

1 Betriebsbedingungen

2 Lastanbau

Masse und Schwerpunkt jedes Werkstücks

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Massa		Schwerpunkt	
Werkstück Nr.	Masse m	X-Achse Xn	Y-Achse Yn	Z-Achse Zn
Wa	0,88 kg	65 mm	0 mm	5 mm
Wb	4,35 kg	150 mm	0 mm	42,5 mm
Wc	0,795 kg	150 mm	111 mm	42,5 mm
Wd	0,5 kg	150 mm	210 mm	42,5 mm

n = a, b, c, d

3 Berechnung des Gesamtschwerpunkts

$$\mathbf{m}_1 = \Sigma \mathbf{m}_1$$

= 0,88 + 4,35 + 0,795 + 0,5 = **6,525 kg**

$$\begin{array}{ll} \textbf{X} & = \frac{1}{m_1} \ x \ \Sigma \ (m_1 \ x \ X_n) \\ & = \frac{1}{6,525} \ (0.88 \ x \ 65 + 4.35 \ x \ 150 + 0.795 \ x \ 150 + 0.5 \ x \ 150) = \textbf{138.5 mm} \end{array}$$

Y =
$$\frac{1}{m_1}$$
 x Σ (mn x yn)
= $\frac{1}{6,525}$ (0,88 x 0 + 4,35 x 0 + 0,795 x 111 + 0,5 x 210) = **29,6 mm**

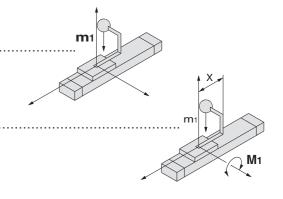
$$Z = \frac{1}{m_1} \times \Sigma \text{ (mn x zn)}$$

$$= \frac{1}{6,525} (0.88 \times 5 + 4.35 \times 42.5 + 0.795 \times 42.5 + 0.5 \times 42.5) = 37.4 \text{ mm}$$

4 Berechnung des Belastungsgrads für statische Last

m₁: Masse

m₁ max (aus 1 der Grafik MY1M/m₁) = 84 [kg]

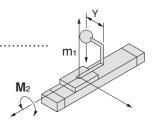

Belastungsgrad $\alpha_1 = m_1/m_1$ max = 6,525/84 = **0,08**

M₁: Moment

M₁ max (aus 2 der Grafik MY1M/M₁) = 59 [Nm]

 $M_1 = m_1 \times g \times X = 6,525 \times 9,8 \times 138,5 \times 10^{-3} = 8,86 \text{ [Nm]}$

Belastungsgrad $\alpha 2 = M_1/M_1 \text{ max} = 8,86/59 = 0,15$



M₂: Moment

M₂ max (aus 3 der Grafik MY1M/M₂) = 24 Nm

$$M_3 = m_1 \times g \times Y = 6,525 \times 9,8 \times 29,6 \times 10^{-3} = 1,89 \text{ Nm}$$

Belastungsgrad $\alpha_3 = M_2/M_2 \text{ max} = 1,89/24 = 0,08$

5 Berechnung des Belastungsgrads für dynamisches Moment -

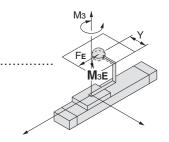
Äquivalente Last FE bei Aufprall

FE =
$$\frac{1.4}{100}$$
 x va x g x m = $\frac{1.4}{100}$ x 200 x 9.8 x 6.525 = 179.1 N

M1E: Moment

 M_1E max (aus 4 der Grafik MY1M/ M_1 in der 1,4 va = 280 mm/s) = 42,1 Nm

$$M_1E = \frac{1}{3} \times FE \times Z = \frac{1}{3} \times 179,1 \times 37,4 \times 10^{-3} = 2,23 \text{ Nm}$$


Belastungsgrad $\alpha_4 = M_1 E/M_1 E \text{ max} = 2,23/42,1 = 0,05$

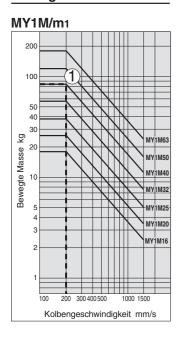
M₃E max (aus 5 der Grafik MY1M/M₃ in der 1,4 υ a = 280 mm/s) = 5,7 Nm

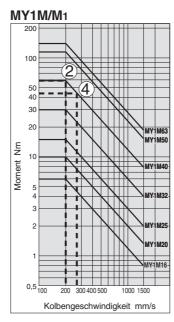
$$M_3E = \frac{1}{3}x FE x Y = \frac{1}{3}x 179,1 x 29,6 x 10^{-3} = 1,77 Nm$$

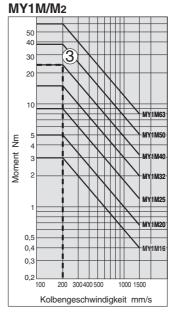
Belastungsgrad $\alpha_5 = M_3E/M_3E$ max = 1,77/5,7 = 0,31

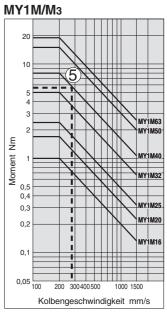
6 Summieren und Überprüfen der Belastungsgrade der Führung

 $\Sigma \alpha = \alpha_1 + \alpha_2 ++ \alpha_3 ++ \alpha_4 ++ \alpha_5 = 0.67 \le 1$

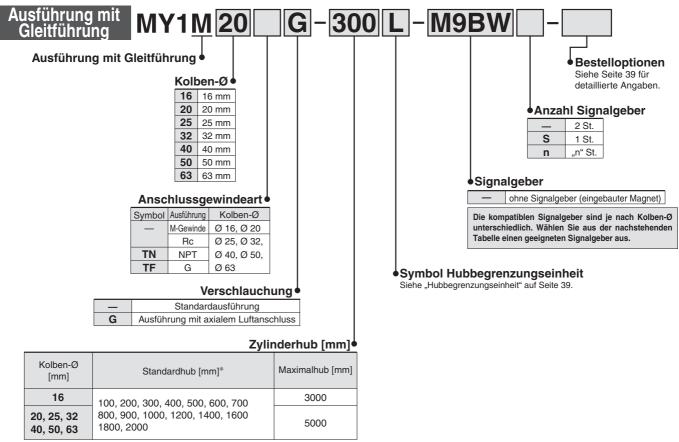

Die obige Berechnung ergibt einen zulässigen Wert; das ausgewählte Modell ist verwendbar.


Wählen Sie einen separaten Stoßdämpfer.


Ergibt die Summe der Belastungsgrade der Führung $\Sigma\alpha$ in der obigen Formel einen Wert größer 1, ziehen Sie eine geringere Geschwindigkeit, einen größeren Kolben-Ø oder eine andere Produktserie in Betracht.


Bewegte Masse

Zulässiges Moment



Kolbenstangenloser Bandzylinder Ausführung mit Gleitführung

Serie MY1M

Ø 16, Ø 20, Ø 25, Ø 32, Ø 40, Ø 50, Ø 63

Bestellschlüssel

Hübe können von einem Mindesthub von 1 mm in 1 mm-Schritten bis zur max Hublänge angefertigt werden. Bei einem Hub kleiner oder gleich 49 mm ist das Luftdämpfungsvermögen vermindert und es können nicht mehrere Signalgeber montiert werden. Beachten Sie diesen Punkt.

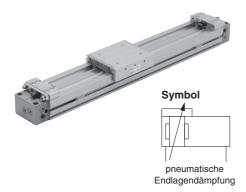
Geben Sie außerdem für Hübe über 2000 mm "-XB11" am Ende der Bestellnummer an. Siehe "Bestelloptionen" für Details

Verwendbare Signalgeber/Siehe Seiten 107 bis 117 für nähere Informationen zu Signalgebern.

		Elektrischer Elektrischer Lastsp		astspannı	ıng		Signalgeb	ermodel	I	Anschl	usskab	elläng	ge [m]	vorver-					
Aus- führung	Sonderfunktion	Eingang	psan	Anschluss		С	AC	senkrecht		gerade		0,5	1	3	5	drahteter	zulässi	ge Last	
lullully		Lingung	Betrie	(Ausgang)	U		AC	Ø 16, Ø 20	Ø 25 bis Ø 63	Ø 16, Ø 20	Ø 25 bis Ø 63	(—)	(M)	(L)	(Z)	Stecker			
ē				3-Draht (NPN)		5 V, 12 V		M9	NV	MS	N		•	•	0	0	IC-Steuerung		
geb				3-Draht (PNP)		5 V, 12 V		M9	PV	MS	P			•	0	0	10-Steuerung		
lali				zweidraht		12 V		M9	BV	MS)B		•	•	0	0	_		
Sig	Diagnoseanzeige (2-farbig)	einge- j			3-Draht (NPN)		5 V, 12 V		M9NWV		M9I	W		•	•	0	0	IC-Steuerung	Relais,
				ja	3-Draht (PNP)	24 V	5 V, 12 V] - [M9F	PWV	M91	PW		•	•	0	0	10-Sieuerung	SPS-
sch	(Z-laibig)	gossene Kabel		zweidraht		12 V		M9E	3WV	M9I	BW		•	•	0	0	_	01 0-	
elektronischer		Nabel		3-Draht (NPN)		5 V, 12 V		M9NAV**		M9N	A**	0	0	•	0	0	IC-Steuerung		
늏	wasserfest (2-farbig)			3-Draht (PNP)		5 V, 12 V		M9P	AV**	M9P	A**	0	0	•	0	0	10-Steuerung		
8	(Z larbig)			zweidraht		12 V		M9B	AV**	M9B	A**	0	0	•	0	0	_		
. <u>.</u>		Einge-		3-Draht (entspricht NPN)	_	5 V	_	A96V	_	A96	Z 76				_	_	IC-Steuerung	_	
Reed- Schalter	gossene '	gossene de Gabel	gossene	ja	-woidrobt	raht 24 V 12 V 100 V A93V — A93 Z73			•		_	_	Relais,						
- S			Kabel nein	nein	zweidraht 24 V 1	12 V	max. 100 V	A90V		A90	Z80					_	IC-Steuerung	SPS-	

^{**} Wasserfeste Signalgeber können auf den o. g. Modellen montiert werden, in diesem Fall kann SMC jedoch die Wasserfestigkeit nicht garantieren. Setzen Sie sich bei Verwendung wasserfester Modelle mit den o.g. Bestellnummer mit SMC in Verbindung.

* Symbole für Anschlusskabellänge: — Beispiel: M9NW * Elektronische Signalgeber mit der Markierung "O" werden auf Bestellung gefertigt. 1 m M Beispiel: M9NWM * Um Signalgeber (Ausführung M9) auf Zylindern mit Ø 25 bis Ø 63 umzurüsten, sind gesonderte 3 m L Beispiel: M9NWL Signalgeberhalter (BMG2-012) erforderlich.


^{*} Signalgeber werden mitgeliefert (nicht montiert). (Siehe Seiten 115 bis 117 für nähere Angaben zur Signalgebermontage.)

^{*} Neben den o.g. Signalgebern können verschiedene andere verwendet werden. Weitere Einzelheiten finden Sie auf Seite 117.

Kolbenstangenloser Bandzylinder Ausführung mit Gleitführung

Serie MY1M

Bestelloptionen: Technische Daten (Nähere Angaben finden Sie auf den Seiten 118 bis 120.)

Symbol	Technische Daten
-X168	Einschraubgewinde
-XB11	Langhub-Ausführung
-XB22	Stoßdämpfer sanft dämpfende Ausführung Serie RJ
-XC67	NBR-Beschichtung im Staubschutzband
20-	Kupferfrei

Technische Daten

Kolben-Ø [r	nm]	16	20	25	32	40	50	63			
Medium		Druckluft									
Wirkungsw	/eise	doppeltwirkend									
Betriebsdruckbereich		0,2 bis 0,8 MPa 0,15 bis 0,8 MPa									
Prüfdruck		1,2 MPa									
Umgebungs- und Medientemperatur		5 bis 60 °C									
Dämpfung		pneumatische Endlagendämpfung									
Schmierun	g	lebensdauergeschmiert									
Hubtoleranz		1000 max. +1,8 1001 bis 3000 +2,8	³, 2701 l	ois 5000	+2,8 0						
Luft- anschluss-	Anschluss vorn/seitlich	M5 x 0,8	Rc	1/8	Rc 1/4	Rc	3/8				
größe	Ausgang unten	Ø 4		Ø	6	Ø 8	Ø	10			

Kolbengeschwindigkeit

K	olben-Ø [mm]	16 bis 63					
ohne Hubbegren	zungseinheit	100 bis 1000 mm/s					
Hubbegrenzungs-	Einheit A	100 bis 1000 mm/s ⁽¹⁾					
einheit	Einheit L und Einheit H	100 bis 1.500 mm/s ⁽²⁾					

Anm. 1) Beachten Sie, dass die Dämpfungskapazität abnimmt, wenn der Hubeinstellbereich durch Einstellen des Anschlagbolzens vergrößert wird. Wird der auf S. 34 angegebene Dämpfungshubbereich überschritten, sollte die Kolbengeschwindigkeit 100 bis 200 mm pro Sekunde betragen.

Anm. 2) Bei der Ausführung mit zentralem Luftanschluss beträgt die Kolbengeschwindigkeit 100 bis 1000 mm/s. Anm. 3) Betreiben Sie den Zylinder mit einer Geschwindigkeit innerhalb des Bereichs der Dämpfungskapazität.

Technische Daten Hubbegrenzungseinheit

	3 3																				
Kolben-	Kolben-Ø [mm]		6		20			25			32			40			50			63	
Einheitssymbol		Α	L	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н
Konfiguration Stoßdämpfermodell		Mit Einstell- bolzen	RB 0806 Mit Einstell- bolzen	Mit Einstell- bolzen	RB 0806 Mit Einstell- bolzen		Mit Einstell- bolzen		RB 1412 Mit Einstell bolzen	Mit Einstell bolzen		RB 2015: Mit Einstell bolzen	holzen	RB 1412 Mit Einstell bolzen		Mit Einstell bolzen			Mit Einstell bolzen	RB 2015: Mit Einstell bolzen	RB 2725 Mit Einstell bolzen
Hubeinstell-	ohne Distanzstück	tück 0 bis -5,6		0	0 bis -6		0 bis -11,5		0 bis -12		0	bis -1	6	0	bis –2	:0	0	bis -2	5		
bereich mit Zwischenstück	mit kurzem Zwischenstück	-5,6 bi	-5,6 bis -11,2		−6 bis −12 -		-11	-11,5 bis -23		-12 bis -24		-1	6 bis –	32	-2	–20 bis –40		−25 bis −50		50	
[mm]	mit langem Zwischenstück	-11,2 bis -16,8		-12	-12 bis -18		-23 bis -34,5		–24 bis –36		-32 bis -48 -40 bis -60		-50 bis -75								

^{*} Der Hubeinstellbereich gilt für eine Seite bei Montage auf einem Zylinder.

Montagezeichnung Hubbegrenzungseinheit

Sy	mbol l	Hubbegrenz	zungs	einhei	t						iiioiii	agezeie	initially ridbbogiciize
						rechte	Hubbeg	renzungs	einheit				Hubbegrenzungseinheit
			ohne	A: Mit				lämpfer für ge nstellbarer Ans			lämpfer für scl istellbarer Ans		
			Einheit		mit kurzem Zwischen- stück	mit langem Zwischen- stück		mit kurzem Zwischen- stück	mit langem Zwischen- stück		mit kurzem Zwischen- stück	mit langem Zwischen- stück	
=	ohr	ne Einheit	_	SA	SA6	SA7	SL	SL6	SL7	SH	SH6	SH7	Lânge Distanzstu
einheit	A: Mit An	schlagbolzen	AS	Α	AA6	AA7	AL	AL6	AL7	AH	AH6	AH7	Distanzer
seir		mit kurzem Zwischenstück	A6S	A6A	A6	A6A7	A6L	A6L6	A6L7	A6H	A6H6	A6H7	Anbaubeispiel L6I
sbur		mit langem Zwischenstück	A7S	A7A	A7A6	A7	A7L	A7L6	A7L7	A7H	A7H6	A7H7	linke Seite
ızı		pfer für geringe	LS	LA	LA6	LA7	L	LL6	LL7	LH	LH6	LH7	Einheit L Eir
gre	Lasten + einstellbarer	mit kurzem Zwischenstück	L6S	L6A	L6A6	L6A7	L6L	L6	L6L7	L6H	L6H6	L6H7	kurzes Zwischen- lang
ppe	Anschlagbolzen	mit langem Zwischenstück	L7S	L7A	L7A6	L7A7	L7L	L7L6	L7	L7H	L7H6	L7H7	stück stüc
로	H: Mit Stoßdämpf	er für schwere	HS	НА	HA6	HA7	HL	HL6	HL7	Н	HH6	HH7	
n ke	Lasten + einstellbarer	mit kurzem Zwischenstück	H6S	H6A	H6A6	H6A7	H6L	H6L6	H6L7	Н6Н	Н6	Н6Н7	+ +
≡	Anschlagbolzen	mit langem Zwischenstück	H7S	H7A	H7A6	H7A7	H7L	H7L6	H7L7	Н7Н	H7H6	H7	Anschluss- Ar

Länge Distanzstück Anbaubeispiel L6L7 linke Seite rechte Seite Einheit L Einheit L kurzes Zwischenlanges Zwischenstück stück Anschluss-Anschluss-

Zwischenstück

zum Fixieren in Zwischenhubposition

Stoßdämpfer für die Einheiten L und H

otobaampioi	storsdampion for the Emmonton E und 11							
A. of "brung	Hubbegren-							
Ausführung	zungseinheit	16	20	25	32	40	50	63
Standard (Stoßdämpfer/	L	RB0806		RB1007	RB1412		RB2	2015
Serie RB)	Н	_	RB1007	RB1412	RB2015		RB2	2725
Stoßdämpfer/ sanftdämpfende Ausführung	L	RJ08	306H	RJ1007H	RJ14	112H	_	_
Serie RJ montiert (-XB22)	Н	_	RJ1007H	RJ1412H				

^{*} Die Lebensdauer des Stoßdämpfers entspricht je nach Betriebsbedingungen nicht der Lebensdauer der MY1M-Zylinder. Entnehmen Sie die Austauschintervalle den Produktspezifischen Sicherheitshinweisen der Serie RB.

Technische Daten Stoßdämpfer

Mod	dell	RB 0806	RB 1007	RB 1412	RB 2015:	RB 2725				
max. Energiea	2,9	5,9	19,6	58,8	147					
Dämpfhub [r	nm]	6	7	12	15	25				
max. Aufpraligesch	windigkeit [mm/s]		1500							
max. Schaltfreque	enz [Zyklus/min]	80	70	45	25	10				
Federkraft	Federkraft ausgefahren			6,86	8,34	8,83				
[N]	4,22	6,86	15,98	20,50	20,01					
Betriebstemperat	5 bis 60									

^{*} Die Zwischenstücke fixieren die Hubbegrenzungseinheit in Zwischenhubposition.

^{*} Stoßdämpfer/sanft dämpfende Serie RJ montiert (-XB22) als Bestelloption erhältlich.

Serie MY1M

Theoretische Leistung

								[N]	
Kolben- Größe	Kolben Fläche	Detriebourder fivil at							
[mm]	[mm ²]	0,2	0,3	0,4	0,5	0,6	0,7	0,8	
16	200	40	60	80	100	120	140	160	
20	314	62	94	125	157	188	219	251	
25	490	98	147	196	245	294	343	392	
32	804	161	241	322	402	483	563	643	
40	1256	251	377	502	628	754	879	1005	
50	1962	392	588	784	981	1177	1373	1569	
63	3115	623	934	1246	1557	1869	2180	2492	

Anm.) Theoretische Zylinderkraft [N] = Druck [MPa] x Kolbenfläche [mm²)

Gewicht

								[kg]
	lbe	Basis-	zusätzliches Gewicht je	Gewicht der	Gewicht des Stützelements (pro Set)	Gewicht der	r Hubbegrenz (je Einheit)	rungseinheit
	n-Ø [mm]	gewicht	50 mm Hub	bewegli- chen Teile	Ausführung A und B	Gewicht der Einheit A	Gewicht Einheit L	Gewicht Einheit H
1	16	0,67	0,12	0,19	0,01	0,03	0,04	_
2	20	1,11	0,16	0,28	0,02	0,04	0,05	0,08
2	25	1,64	0,24	0,39	0,02	0,07	0,11	0,18
3	32	3,27	0,38	0,81	0,04	0,14	0,23	0,39
4	10	5,88	0,56	1,41	0,08	0,25	0,34	0,48
5	50	10,06	0,77	2,51	0,08	0,36	0,51	0,81
6	3	16,57	1,11	3,99	0,17	0,68	0,83	1,08

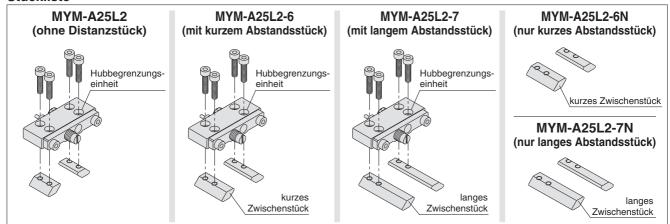
Berechnung: (Beispiel) MY1M25-300A

- zusätzliches Gewicht ·· 0,24 kg/Hub 50+ 2 x Einheit A 0,24 kg x 300/50 + 2 x 0,07 kg =1,58 kg • Gewicht 3,22 kg

Option

Bestellnummer Hubbegrenzungseinheit

Anm. 1) Für nähere Angaben zum Einstellbereich siehe Seite 39.


rechts

Anm. 2) Einheiten A und L nur für Ø 16

Zwischenhubposition.

* Die Zwischenstücke werden für ein 2-er Set geliefert.

Stückliste

Bestellnummer Stützelement

Kolben-Ø [mm]	16	20	25	32	40	50	63
Stützelement A	MY-S16A	MY-S20A	MY-S25A	MY-S32A	MY-S40A		MY-S63A
Stützelement B	MY-S16B	MY-S20B	MY-S25B	MY-S32B	MY-S40B		MY-S63B

Für weitere Informationen zu Abmessungen usw. siehe Seite 51

Ein Stützelement-Set enthält jeweils ein Element für die linke und für die rechte Seite.

Dämpfungskapazität

Auswahl der Dämpfung

<Pneumatische Dämpfung>
Die kolbenstangenlosen Bandzylinder sind standardgemäß mit einer pneumatischen Dämpfung ausgestattet.

Der Mechanismus der pneumatischen Dämpfung dient zur Vermeidung eines zu starken Aufpralls des Kolbens am Hubende bei hohen Geschwindigkeiten. Die pneumatische Dämpfung dient nicht dazu, den Kolben zum Hub-ende hin abzubremsen.

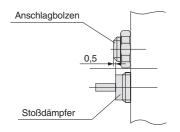
Die von der pneumatischen Dämpfung absorbierbaren Last- und Geschwindigkeits-bereiche werden in den Grafiken gezeigt. Dämpfung

<Hubeinstelleinheit mit Stoßdämpfer>

Verwenden Sie diese Einheit, wenn Sie den Zylinder mit einer Last oder Geschwindigkeit betreiben, die die Grenzwerte der pneumatischen Dämpfung überschreiten oder wenn eine Dämpfung erforderlich ist, weil der Zylinderhub aufgrund der Hubeinstellung außerhalb des effektiven Dämpfungshubbesiche des seine Meisen diese Figure 1980 des entwellen des eines des seines des eines eines des eines des eines eines des eines des eines eines eines eines des eines eines eines des eines eines eines eines des eines eine reichs der pneumatischen Dämpfung liegt.

L-Einheit

Verwenden Sie diese Einheit, wenn der Zylinderhub außerhalb des effektiven Dämpfungsbereichs der pneumatischen Dämpfung liegt, selbst wenn die Last und die Geschwindigkeit innerhalb der Grenzwerte der pneumatischen Dämpfung liegen oder wenn der Zylinder in einem Last- und Geschwindigkeitsbereich betrieben wird, der über den Grenzwerten der pneumatischen Dämpfung und unterhalb der der L-Einheit liegt

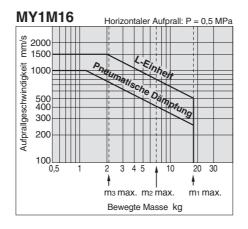

H-Einheit

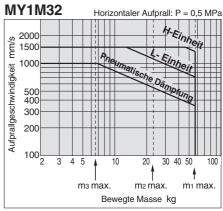
Verwenden Sie diese Einheit, wenn der Zylinder einem Last- und Geschwindigkeitsbereich betrieben wird, der über den Grenzwerten der L-Einheit und unter denen der H-Einheit liegt

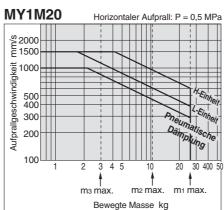
Achtung

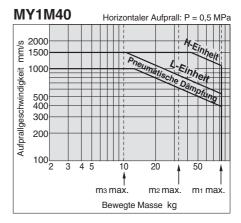
1. Beachten Sie die unten stehende Abbildung, wenn der Anschlagbolzen zur Hubeinstellung verwendet wird.

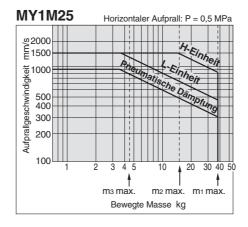
Die Dämpfungskapazität nimmt drastisch ab, wenn der effektive Hub des Stoßdämpfers aufgrund der Hubeinstellung verkürzt wird. Ziehen Sie den Anschlagbolzen in der Position fest, in der er ca. 0,5 mm über Stoß-dämpfer hinausragt.

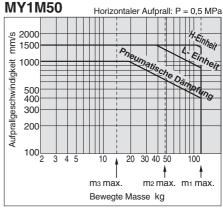


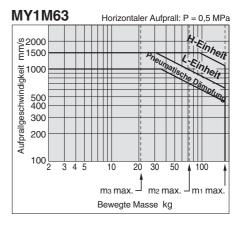

2. Der Stoßdämpfer darf nicht zusammen mit der pneumatischen Dämpfung eingesetzt


Pneumatischer Dämpfungshub Einheit: mm


	1 3 3 1 1
Kolben-Ø	Dämpfungshub
16	12
20	15
25	15
32	19
40	24
50	30
63	37


Dämpfungskapazität der pneumatischen Dämpfung und der Hubeinstelleinheiten





Anzugsdrehmoment der Halteschraube der Hubeinstelleinheit Einheit: Nm

		LIIIIIEIL INIII
Kolben-Ø [mm]	Einheit	Anzugsdrehmoment
16	Α	0,6
10	L	0,0
	Α	
20	L	1,5
	Н	
	Α	3,0
25	L	3,0
	Н	5,0
	Α	5,0
32	L	3,0
	Н	12
	Α	
40	L	12
	Н	
	А	
50	L	12
	Н	
	Α	
63	L	24
	Н	

Anzugsdrehmoment der Halteschraube der Hubeinstelleinheit-Verschlussplatte Einheit: Nm

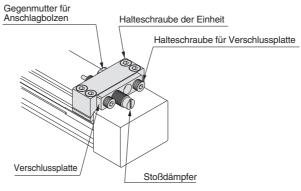
Kolben-ø [mm]	Einheit	Anzugsdrehmoment
25	L	1,2
25	Н	3,3
32	L	3,3
32	Н	10
40	L	3,3
70	Н	10

Berechnung der Dämpfungsenergie für Hubeinstelleinheit mit Stoßdämnfer

nubellistell		buampier	
	Horizontal	Vertikal (nach unten)	Vertikal (nach oben)
Art des Aufpralls	<u>m</u>	U m	s = = = = = = = = = = = = = = = = = = =
Kinetische Energie E ₁		$\frac{1}{2}m^{\centerdot}\mathcal{V}^{2}$	
Schubenergie E ₂	F•s	F•s + m•g•s	F•s + m•g•s
Absorbierte Energie E		E ₁ + E ₂	

Symbole

- 0: Schlittengeschwindigkeit [m/s] m: Masse des aufprallenden Objekts [kg]
- F: Zvlinderschub [N]
- g: Gravitationsbeschleunigung (9,8 m/s²)
- s: Stoßdämpferhub [m]


Anm.) Die Geschwindigkeit des Schlittens ist zum Zeitpunkt des Aufpralls am Stoßdämpfer gemessen.

Produktspezifische Sicherheitshinweise

Achtung

Seien Sie vorsichtig, dass Ihre Hände nicht in der Einheit eingeklemmt werden.

• Bei Verwendung eines Produkts mit Hubeinstelleinheit verringert sich der Raum zwischen dem Schlitten und der Hubeinstelleinheit, so dass die Hände eingeklemmt werden könnten. Bringen Sie deshalb eine Schutzabdeckung an, um einen direkten Kontakt auszuschließen.

<Befestigung der Einheit>

Die Einheit kann durch gleichmäßiges Anziehen der vier Halteschrauben fixiert werden.

🗥 Achtung

Befestigen Sie die Hubeinstelleinheit nicht in einer Zwischenposition.

Wenn die Hubeinstelleinheit in einer Zwischenposition befestigt wird, können, abhängig von der beim Aufprall frei werdenden Energie, Slip-Effekte auftreten. In diesem Fall empfehlen wir die Verwendung der Befestigungselemente für den Anschlagbolzen, die als Bestelloptionen -X 416 und -X 417 erhältlich sind.

Wenden Sie sich für andere Längen an SMC. (Siehe "Anzugsdrehmoment der Halteschraube der Hubeinstelleinheit".)

< Hubeinstellung mit Anschlagbolzen>

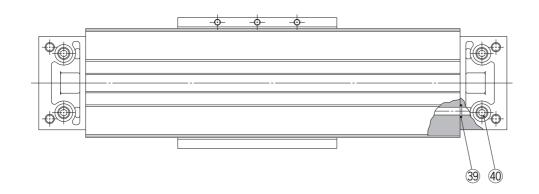
Lösen Sie die Gegenmutter des Anschlagbolzens und stellen Sie dann den Hub von der Seite der Verschlussplatte aus mit einem Schraubenschlüssel ein. Ziehen sie die Gegenmutter wieder fest.

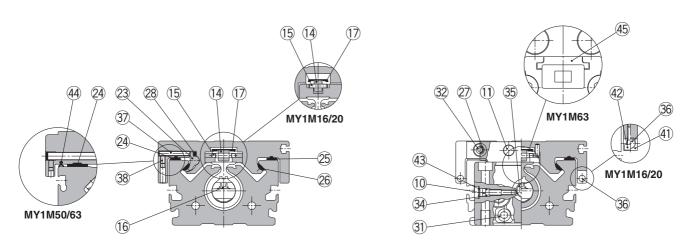
< Hubeinstellung mit Stoßdämpfer>

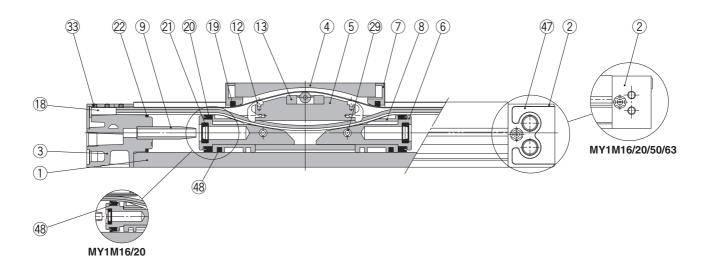
Lösen Sie die zwei Halteschrauben der Ver-schlussplatte und stellen Sie dann den Hub durch Drehen des Stoßdämpfers ein. Ziehen Sie anschließend die Halteschrauben Verschlussplatte gleichmäßig fest, um Stoßdämpfer zu fixieren.

Achten Sie darauf, die Halteschrauben nicht übermäßig festzuziehen. (Außer Ø 10 und Ø 20 der L-Einheit.) (Siehe "Anzugsdrehmoment der Hubeinstelleinheit-Ver-Halteschraube der schlussplatte ".)

Anm.)


Durch das Festziehen der Halteschrauben der Verschlussplatte kann diese leicht durchgebogen werden. Dies hat jedoch keinerlei Auswirkung auf den Stoßdämpfer und die Funktion der Platte.




Serie MY1M

Konstruktion: Ø 16 bis Ø 63

MY1M16 bis 63

MY1M16 bis 63

Stückliste

Nr.	Bezeichnung	Material	Anm.
1	Zylinderrohr	Aluminiumlegierung	harteloxiert
2	Zylinderdeckel WR	Aluminiumlegierung	lackiert
3	Zylinderdeckel WL	Aluminiumlegierung	lackiert
4	Schlitten	Aluminiumlegierung	harteloxiert
5	Mitnehmer	Aluminiumlegierung	chromatiert
6	Kolben	Aluminiumlegierung	chromatiert
_ 7	Endabdeckung	Spezialkunststoff (PBT)	
8	Kolbenführungsband	Spezialkunststoff (PBT)	
9	Dämpfungshülse	Aluminiumlegierung	eloxiert
10	Dämpfungseinstellschraube	Walzstahl	vernickelt
11	Anschlag	Kohlenstoffstahl	vernickelt
12	Riementrenner	Spezialkunststoff (PBT)	
13	Kupplung	gesintertes Eisenmetall	
14	Führungsrolle	Spezialkunststoff (PBT)	
15	Führungsrollenwelle	rostfreier Stahl	
18	Riemenklemmung	Spezialkunststoff (PBT)	
23	Einstellarm	Aluminiumlegierung	chromatiert
24	Lager R	Spezialkunststoff (PBT)	
25	Lager L	Spezialkunststoff (PBT)	
26	Lager S	Spezialkunststoff (PBT)	

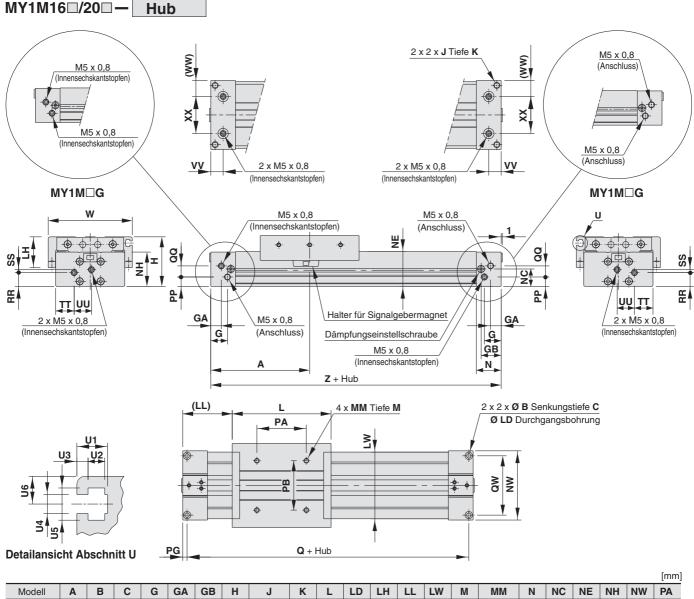
			Δ
Nr.	Bezeichnung	Material	Anm.
27	Distanzstück	rostfreier Stahl	
28	Rückstellfeder	rostfreier Stahl	
29	Spannstift	Werkzeugstahl	
31	Innensechskantschraube	Chrommolybdänstahl	vernickelt
32	Innensechskantschraube	Chrommolybdänstahl	vernickelt
33	Innensechskantschraube	Chrommolybdänstahl	schwarz verzinkt und chromatiert/vernickelt
35	konischer Innensechskantstopfen	Kohlenstoffstahl	vernickelt
36	Magnet	_	
37	Innensechskantschraube	Chrommolybdänstahl	schwarz verzinkt und chromatiert
38	Innensechskantschraube	Chrommolybdänstahl	schwarz verzinkt und chromatiert
40	konischer Innensechskantstopfen	Kohlenstoffstahl	vernickelt
41	Magnethalter	Spezialkunststoff (PBT)	(Ø 16, Ø 20)
42	Innensechskantschraube	Chrommolybdänstahl	vernickelt
43	Sicherungsring Ausführung CR	Federstahl	
45	Kopfplatte	Aluminiumlegierung	harteloxiert (Ø 63)
47	Anschlussabdeckung	Spezialkunststoff (PBT)	(Ø 25 bis Ø 40)
48	Schmutzabstreifer	Spezialkunststoff (PBT)	

Ersatzteile: Dichtsatz

Nr.	Bezeichnung	Menge	MY1M16	MY1M20	MY1M25	MY1M32	MY1M40	MY1M50	MY1M63	
16	Dichtungsband	1	MY16-16C- Hub	MY20-16C-Hub	MY25-16C-Hub	MY32-16C-Hub	MY40-16C-Hub	MY50-16C-Hub	MY63-16A- Hub	
17	Staubschutzband	1	MY16-16B- Hub	MY20-16B-Hub	MY25-16B-Hub	MY32-16B-Hub	MY40-16B- Hub	MY50-16B- Hub	MY63-16B-Hub	
24	O Dina		KA00309	KA00311	KA00311	KA00320	KA00402	KA00777	KA00777	
34	O-Ring	2	(Ø 4 x Ø 1,8 x Ø 1,1)	(Ø 5,1 x Ø 3 x Ø 1,05)	(Ø 5,1 x Ø 3 x Ø 1,05)	(Ø 7,15 x Ø 3,75 x Ø 1,7)	(Ø 8,3 x Ø 4,5 x Ø 1,9)	_	_	
44	Abstreifer seitlich	2	_	_	_	_	_	MYM50-15CK0502B	MYM63-15CK0503B	
19	Abstreifer	2								
20	Kolbendichtung	2								
21	Dämpfungsdichtung	2	MY1M16-PS	MY1M20-PS	MY1M25-PS	MY1M32-PS	MY1M40-PS	MY1M50-PS	MY1M63-PS	
22	Zylinderrohrdichtung	2								
39	O-Ring	4								

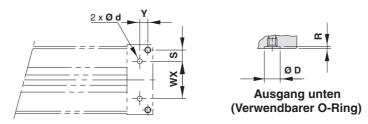
^{*} Die Dichtsätze bestehen jeweils aus den Artikeln (19, 20, 20, 20 und (39). Bestellen Sie den Dichtsatz entsprechend des jeweiligen Kolbendurchmessers. * Die Dichtsätze enthalten einen Beutel mit Fett (10 g). Wenn, (6) und (17) getrennt geliefert werden, ist ein Beutel mit Fett enthalten. (10 g per 1000 Hübe)

Anm.) Es sind zwei Typen des Staubschutzbands erhältlich. Überprüfen Sie, welcher Typ verwendet werden soll, da die Bestellnummer entsprechend der Oberflächenbehandlung der Innensechskanteinstellschraube unterschiedlich ist. 33.


A: Schwarz verzinkt→MY□□-16B-Hub, B: vernickelt →MY□□-16BW-Hub

Mit folgender Bestellnummer können Sie Fett separat bestellen. **GR-S-010** (10 g), **GR-S-020** (20 g)

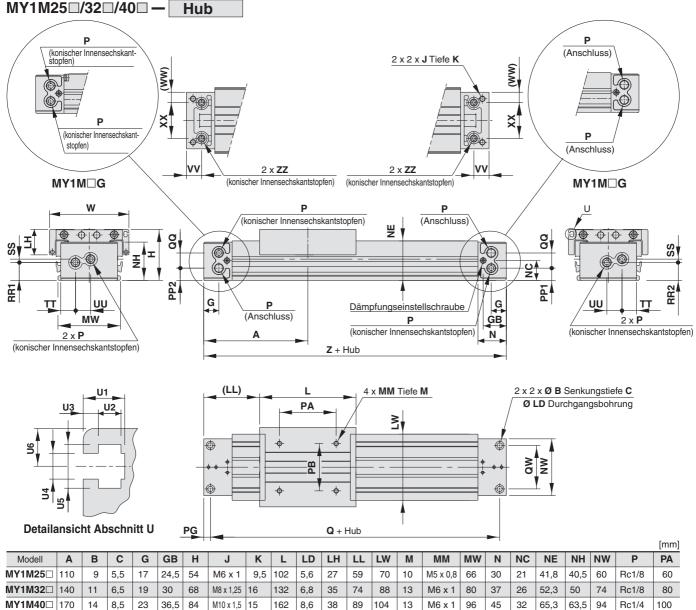
Standardausführung/Ausführung mit axialem Luftanschluss Ø 16, Ø 20


Für Varianten des axialen Luftanschlusses siehe Seite 122.

Modell	Α	В	С	G	GA	GB	Н	J	K	L	LD	LH	LL	LW	M	MM	N	NC	NE	NH	NW	PA
MY1M16□	80	6	3,5	13,5	8,5	16,2	40	M5 x 0,8	10	80	3,6	22,5	40	54	6	M4 x 0,7	20	14	28	27,7	56	40
MY1M20□	100	7,5	4,5	12,5	12,5	20	46	M6 x 1	12	100	4,8	23	50	58	7,5	M5 x 0,8	25	17	34	33,7	60	50

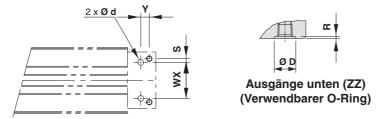
															[mm]
Modell	РВ	PG	PP	Q	QQ	QW	RR	SS	TT	UU	VV	W	ww	XX	Z
MY1M16□	40	3,5	7,5	153	9	48	11	2,5	15	14	10	68	13	30	160
MY1M20□	40	4,5	11,5	191	10	45	14,5	5	18	12	12,5	72	14	32	200

Detaillierte A	bmes	sunge	n des	Absch	nitts U	. [mm]
Modell	U1	U2	U3	U4	U5	U6
MY1M16□	5,5	3	2	3,4	5,8	5
MY1M20□	5,5	3	2	3,4	5,8	5,5



Bohrungsgröße für zentralen Luftanschluss an der Unterseite

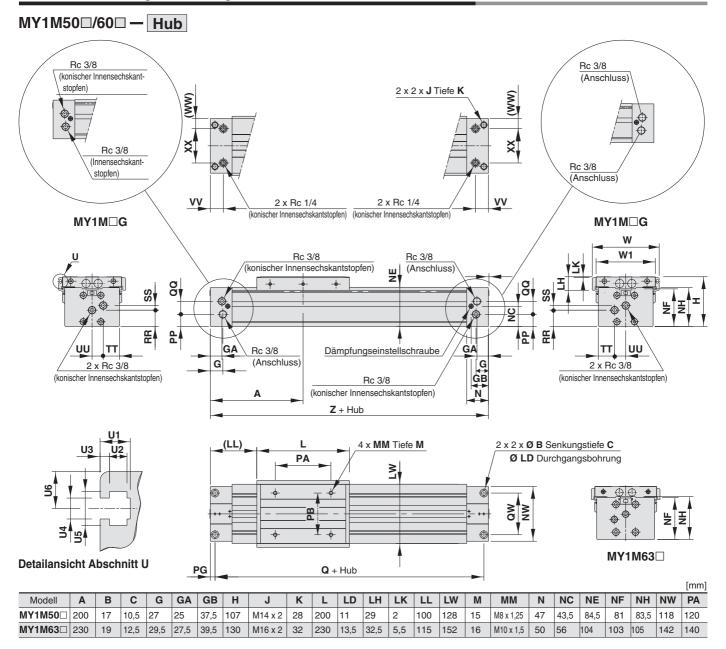
Modell	WX	Υ	S	d	D	R	Verwendbarer O-Ring
MY1M16□	30	6,5	9	4	8,4	1,1	00
MY1M20□	32	8	6,5	4	8,4	1,1	C6


Standardausführung/Ausführung mit axialem Luftanschluss Ø 25, Ø 32, Ø 40 Für Varianten des axialen Luftsanschlusses siehe Seite 122.

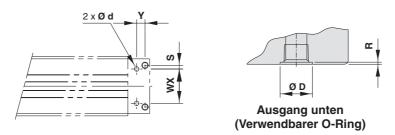
steht für den Zylinder-Versorgungsanschluss.

[mm] ww Modell РΒ PG PP1 PP2 Q QQ QW RR1 RR2 SS TT UU ۷۷ W XX Z ZZ MY1M25 50 7 12.7 12.7 206 15,5 46 18.9 17,9 4,1 15,5 16 16 84 38 220 Rc 1/16 11 MY1M32□ 60 18,5 264 16 60 22 24 16 19 102 13 48 280 Rc 1/16 8 15,5 4 21 MY1M40□ 80 9 17,5 20 322 26 72 25,5 29 26 21 23 118 20 340 Rc 1/8

Detailli				sun	ger	1						
des Abschnitts U [mm]												
Modell	U1	U2	U3	U4	U5	U6						
MY1M25□	5,5	3	2	3,4	5,8	5						
MY1M32□	5,5	3	2	3,4	5,8	7						
MY1M40□	6,5	3,8	2	4,5	7,3	8						


Bohrungsgröße für zentralen Luftanschluss an der Unterseite

ĺ	Modell	WX	Υ	S	d	D	R	Verwendbarer O-Ring
	MY1M25□	38	9	4	6	11,4	1,1	C9
	MY1M32□	48	11	6	6	11,4	1,1	Ca
	MY1M40□	54	14	9	8	13,4	1,1	C11,2


Serie MY1M

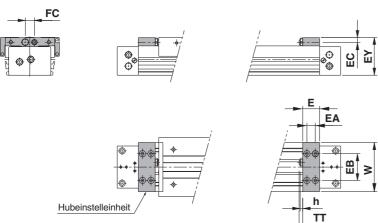
Standardausführung/Ausführung mit axialem Luftanschluss Ø 50, Ø 63 Siehe Seite 122 für Varianten des axialen Luftanschlusses.

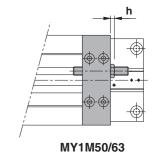
																[mm]
Modell	PB	PG	PP	Q	QQ	QW	RR	SS	TT	UU	VV	W	W1	ww	XX	Z
MY1M50□	90	10	26	380	28	90	35	10	35	24	28	144	128	22	74	400
MY1M63□	110	12	42	436	30	110	49	13	43	28	30	168	152	25	92	460

Detaillierte Abmessungen Abschnitt U [mm] Modell U1 U2 U4 U5 U6 MY1M50□ 6,5 3,8 4,5 7,3 8 MY1M63□ 8,5 5 5,5 8,4 8

Bohrungsgröße für zentralen Luftanschluss an der Unterseite

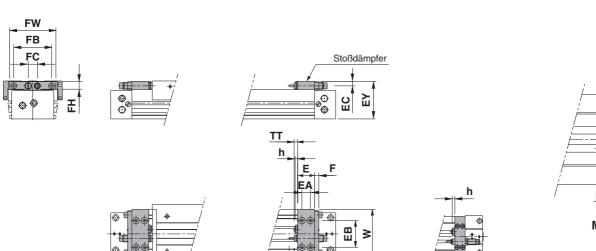
Modell	WX	Υ	S	d	D	R	Verwendbarer O-Ring
MY1M50□	74	18	8	10	17,5	1,1	C15
MY1M63□	92	18	9	10	17,5	1,1	015

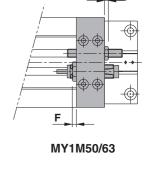



Hubeinstelleinheit

Hubeinstelleinheit

Mit einstellbarem Anschlagbolzen



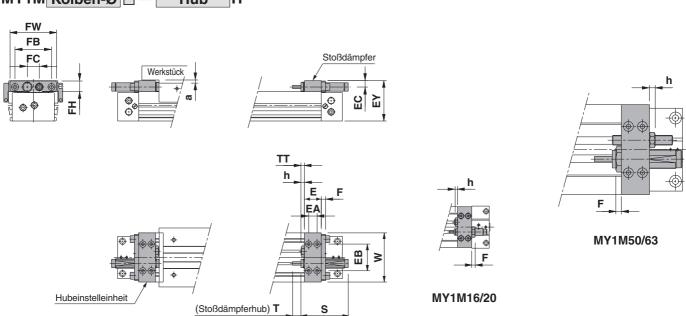

Modell	Е	EA	EB	EC	EY	FC	h	TT	W
MY1M16	14,6	7	30	5,8	39,5	14	3.6	5,4 (max. 11)	58
MY1M20	20	10	32	5,8	45,5	14	3.6	5 (max. 11)	58
MY1M25	24	12	38	6,5	53,5	13	3,5	5 (max. 16,5)	70
MY1M32	29	14	50	8,5	67	17	4,5	8 (max. 20)	88
MY1M40	35	17	57	10	83	17	4,5	9 (max. 25)	104
MY1M50	40	20	66	14	106	26	5,5	13 (max. 33)	128
MY1M63	52	26	77	14	129	31	5,5	13 (max. 38)	152

Stoßdämpfer für leichte Lasten + einstellbarem Anschlagbolzen MY1M Kolben-Ø — Hub L

S

(Stoßdämpferhub) T

																[mm]
Modell	Е	EA	EB	EC	EY	F	FB	FC	FH	FW	h	S	Т	TT	W	Modell Stoßdämpfer
MY1M16	14,6	7	30	5,8	39,5	4		14			3,6	40,8	6	5,4 (max. 11)	58	RB0806
MY1M20	20	10	32	5,8	45,5	4		14			3,6	40,8	6	5 (max. 11)	58	RB0806
MY1M25	24	12	38	6,5	53,5	6	54	13	13	66	3,5	46,7	7	5 (max. 16,5)	70	RB1007
MY1M32	29	14	50	8,5	67	6	67	17	16	80	4,5	67,3	12	8 (max. 20)	88	RB1412
MY1M40	35	17	57	10	83	6	78	17	17,5	91	4,5	67,3	12	9 (max. 25)	104	RB1412
MY1M50	40	20	66	14	106	6		26			5,5	73,2	15	13 (max. 33)	128	RB2015
MY1M63	52	26	77	14	129	6		31	_		5,5	73,2	15	13 (max. 38)	152	RB2015

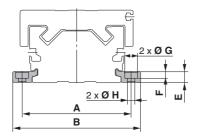

MY1M16/20

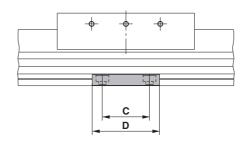
Serie MY1M

Hubeinstelleinheit

Stoßdämpfer für schwere Lasten + einstellbarem Anschlagbolzen

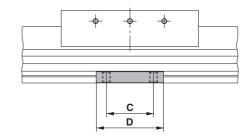
MY1M Kolben-Ø □ — Hub H


* Da die Abmessung EY der H-Einheit größer als die obere Höhe des Schlittens (Abmessung H) ist, muss bei der Montage eines Werkstücks, das über die Gesamtlänge (Abmessung L) des Schlittens hinausragt , ein Spiel mit min. Abmessung "a" an der Werkstückseite gelassen werden.


Modell	Е	EA	EB	EC	EY	F	FB	FC	FH	FW	h	S	Т	TT	W	Shock absorber model	а
MY1M20	20	10	32	7,7	50	5		14			3,5	46,7	7	5 (max. 11)	58	RB1007	5
MY1M25	24	12	38	9	57,5	6	52	17	16	66	4,5	67,3	12	5 (max. 16,5)	70	RB1412	4,5
MY1M32	29	14	50	11,5	73	8	67	22	22	82	5,5	73,2	15	8 (max. 20)	88	RB2015	6
MY1M40	35	17	57	12	87	8	78	22	22	95	5,5	73,2	15	9 (max. 25)	104	RB2015	4
MY1M50	40	20	66	18,5	115	8		30			11	99	25	13 (max. 33)	128	RB2725	9
MY1M63	52	26	77	19	138,5	8		35			11	99	25	13 (max. 38)	152	RB2725	9,5

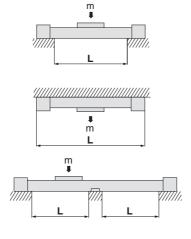
Befestigungselement

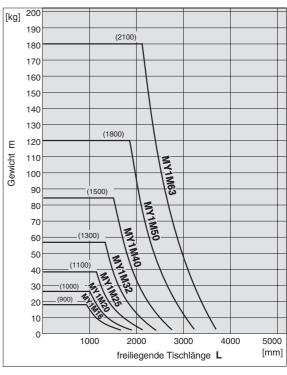
Befestigungselement A


MY-S□A

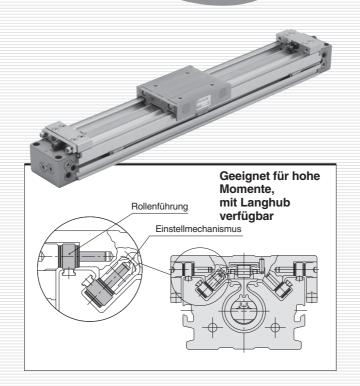
Befestigungselement B MY-S□B

Model	Verwendbarer Zylinder	Α	В	С	D	Е	F	G	Н	J
MY-S16A	MY1M16	61	71,6	15	26	4,9	3	6,5	3,4	M4 x 0,7
MY-S20A	MY1M20	67	79,6	25	38	6,4	4	8	4,5	M5 x 0,8
MY-S25A	MY1M25	81	95	35	50	8	5	9,5	5,5	M6 x 1
MY-S32A	MY1M32	100	118	45	64	11,7	6	11	6,6	M8 x 1,25
MY-S40A	MY1M40	120	142	EE	00	140	0.5	4.4	0	Miovite
IVI 1-540B	MY1M50	142	164	55	80	14,8	8,5	14	9	M10 x 1,5
MY-S63A	MY1M63	172	202	70	100	18,3	10,5	17,5	11,5	M12 x 1,75


^{*} Set beinhaltet zwei Elemente für rechts und links.


Hinweise zur Verwendung des Befestigungselements

Bei Betrieb mit Langhub kann eine Durchbiegung des Zylinderrohrs abhängig von dessen Eigengewicht und dem Werkstückgewicht auftreten. In diesem Fall sollte ein Befestigungselement in der Hubmitte eingesetzt werden. Die Länge (L) des Befestigungselements darf die in der Grafik rechts gezeigten Werte nicht überschreiten.


⚠ Achtung

- 1. Bei ungenauer Bemessung der Montageflächen des Zylinders kann die Verwendung
 eines Befestigungselements zu einer
 verminderten Zylinderleistung führen.
 Achten Sie deshalb darauf, das Zylinderrohr
 bei der Montage zu nivellieren. Bei Betrieb
 mit Langhub unter Einwirkung von
 Vibrationen und Stößen wird der Einsatz
 eines Befestigungselements auch dann
 empfohlen, wenn dessen Länge außerhalb
 des in der Grafik gezeigten Bereichs liegt.
- 2. Die Befestigungselemente dienen nicht zur Montage.

Serie MY1C Vor Inbetriebnahme

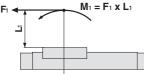
Max. zulässiges Moment/Max. zulässige Last

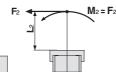
Modell	Kolben-ø	Max. zula	ässiges Mor	ment [Nm]	Max. z	ulässige Las	st [kg]
Modeli	[mm]	M 1	M 2	Мз	m 1	m 2	m 3
	16	6,0	3,0	2,0	18	7	2,1
	20	10	5,0	3,0	25	10	3
	25	15	8,5	5,0	35	14	4,2
MY1C	32	30	14	10	49	21	6
	40	60	23	20	68	30	8,2
	50	115	35	35	93	42	11,5
	63	150	50	50	130	60	16

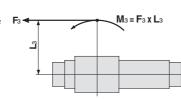
Die obigen Werte sind die max. zulässigen Werte für das Moment und die bewegte Masse. Beachten Sie die jeweiligen Grafiken für das max. zulässige Moment und die max. zulässige Last für spezifische Kolbengeschwindigkeiten.

Max. zulässiges Moment

Wählen Sie ein Moment, das innerhalb des in den Grafiken gezeigten Betriebsbereichs liegt. Beachten Sie, dass der Wert der max. zulässigen Last manchmal überschritten werden kann, auch wenn er innerhalb der in den Grafiken gezeigten Grenzwerte liegt. Überprüfen Sie deshalb auch die zulässige Last für die gewählten Betriebs-bedingungen.


Last [kg]





Moment [Nm]

<Berechnung des Belastungsgrads der Führung

- 1. Max. zulässige Last (1), statisches Moment (2), und dynamisches Moment (bei Aufprall am Anschlag) (3) müssen für die Auswahlberechnungen bestimmt werden.
- st Verwenden Sie zur Berechnung $\mathfrak V$ a (Durchschnittsgeschwindigkeit) für (1) und (2), und $\mathfrak V$ (Aufprallgeschwindigkeit $\mathfrak V$ = 1,4 Va) für (3).

Ermitteln Sie m max für (1) aus der Grafik der max. zulässigen Last (m1, m2, m3) und Mmax für (2) und (3) aus der Grafik des max. zulässigen Moments (M1, M2, M3)

Summe der Belastungsgrade	Σα =	Bewegte Masse [m]	Statisches Moment [M] Anm. 1)	Dynamisches Moment [ME] Anm. 2)
der Führung	20. –	Max. zulässige Last [m max]	Zulässiges statisches Moment [Mmax]	Zulässiges dynamisches Moment [MEmax]

- Anm. 1) Durch die Last usw. erzeugtes Moment im Ruhezustand des Zylinders.
- Anm. 2) Durch die Stoßbelastung am Hubende erzeugtes Moment (bei Aufprall am Anschlag).
- Anm. 3) Abhängig von der Werkstückform können mehrere Momente auftreten. In diesem Fall entspricht die Summe der Belastungsgrade ($\Sigma \alpha$) der Summe aller Momente.
- 2. Referenzformeln (Dynamisches Moment bei Aufprall)

Verwenden Sie folgende Formeln zur Berechnung des dynamischen Moments unter Berücksichtigung des Aufpralls am Anschlag.

- m: Bewegte Masse [kg]
- F: Kraft [N]
- FE: Äquivalente Last zum Aufprall (bei Aufprall am Anschlag) (N)

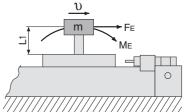
va: Durchschnittsgeschwindigkeit [mm/s]

M : Statisches Moment [Nm]

$$V = 1.4 \text{ Va [mm/s]}$$
 $F_E = \frac{1.4}{100} \text{ Va} \cdot \text{g} \cdot \text{m}$

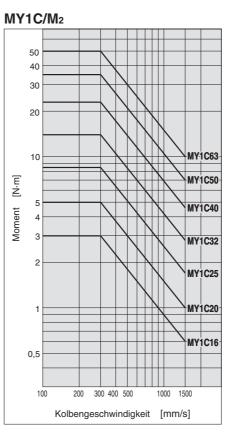
$$ME = \frac{1}{3} \cdot FE \cdot L_1 = 4,57 \, \Im a \cdot m \cdot L_1 \, [Nm]$$

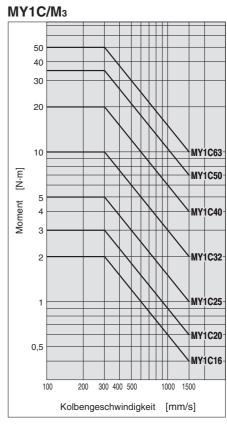
- υ: Aufprallgeschwindigkeit (mm/s)
- L₁: Abstand zum Schwerpunkt (m)
- M_E: Dynamisches Moment [N·m]
- δ : Dämpfungskoeffizient Mit elastischer Dämpfscheibe= 4/100 (MY1B10, MY1H10) Mit pneumatischer Dämpfung = 1/100 Mit Stoßdämpfer = 1/100
- g: Erdbeschleunigung (9,8 m/s²)

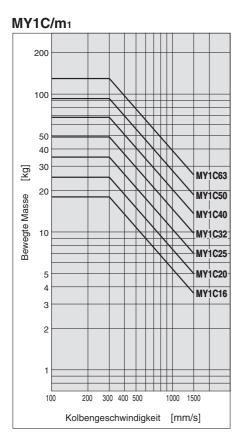

Max. zulässige Last

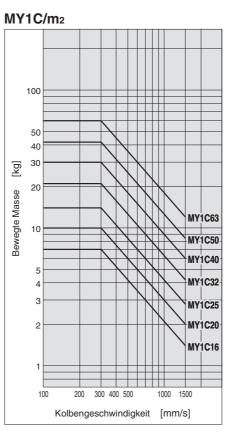
Wählen Sie eine Last, die innerhalb des in den Grafiken gezeigten Betriebsbereichs liegt. Beachten Sie, dass der Wert des max. zulässigen Moments manchmal überschritten werden kann, auch wenn er innerhalb der in den Grafiken gezeigten Grenzwerte liegt. Überprüfen Sie deshalb auch das zulässige Moment für die gewählten Betriebsbedingungen.

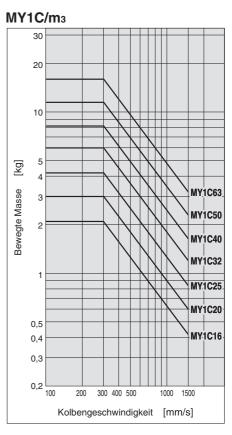
Anm. 4) 1,4 $va\delta$ ist ein dimensionsloser Koeffizient zur Berechnung der Stoßkraft. Anm. 5) Mittlerer Lastkoeffizient (= $\frac{1}{3}$): Dieser Koeffizient dient zur Ermittlung des Durchschnitts des max. Lastmoments beim Aufprall auf den Anschlag unter Berücksichtigung der Kalkulation der


3. Nähere Angaben zur Modellauswahl finden Sie auf den Seiten 56 und 57.



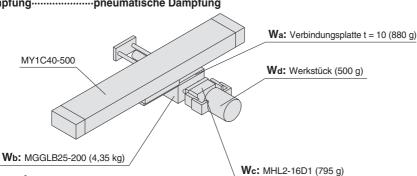


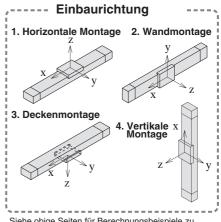

Vor Inbetriebnahme Serie MY1C


MY1C/M₁ 100 50 40 MY1C63 30 [N m MY1C50 Moment MY1C40 MY1C32 MY1C25 MY1C20 MY1C16 300 400 500 Kolbengeschwindigkeit [mm/s]

Serie MY1C Modellauswahl

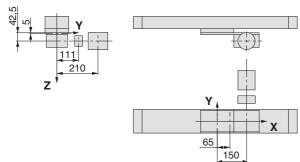
Wählen Sie das für Ihre Anwendung am besten geeignete Modell der Serie MY1C gemäß der folgenden Vorgehensweise.


Berechnung des Belastungsgrads der Führung


1 Betriebsbedingungen -

ZylinderMY1C40-500 Mittlere Betriebsgeschwindigkeit $\upsilon a \dots$ 300 mm/s

EinbaurichtungDeckenmontage


Dämpfung-----pneumatische Dämpfung

Siehe obige Seiten für Berechnungsbeispiele zu jeder Einbaurichtung.

2 Lastanbau

Masse und Schwerpunkt jedes Werkstücks

Werk-	Masse		Schwerpunkt	
stück Nr. Wn	Mn	X-Achse Xn	Y-Achse Yn	Z-Achse Zn
Wa	0,88 kg	65 mm	0 mm	5 mm
Wb	4,35 kg	150 mm	0 mm	42,5 mm
Wc	0,795 kg	150 mm	111 mm	42,5 mm
Wd	0,5 kg	150 mm	210 mm	42,5 mm

n = a, b, c, d

3 Berechnung des Gesamtschwerpunkts

$$\mathbf{m}_2 = \Sigma \mathbf{m}_1$$

= 0,88 + 4,35 + 0,795 + 0,5 = **6,525 kg**

$$Y = \frac{1}{m_2} \times \Sigma (mn \times yn)$$
= $\frac{1}{6,525} (0.88 \times 0 + 4.35 \times 0 + 0.795 \times 111 + 0.5 \times 210) = 29.6 \text{ mm}$

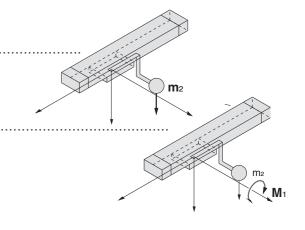
$$Z = \frac{1}{m_2} \times \Sigma \text{ (mn x zn)}$$

$$= \frac{1}{6,525} (0.88 \times 5 + 4.35 \times 42.5 + 0.795 \times 42.5 + 0.5 \times 42.5) = 37.4 \text{ mm}$$

4 Berechnung des Belastungsgrads für statische Last -

m2: Masse

m₂ max (aus 1 der Grafik MY1C/m₂) = 30 kg

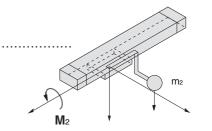

Belastungsgrad $\alpha_1 = m_2 / m_2 \text{ max} = 6,525/30 = 0,22$

M₁: Moment

 M_1 max (aus 2 der Grafik MY1C/ M_1) = 60 Nm

 $M_1 = m_2 \times g \times X = 6,525 \times 9,8 \times 138,5 \times 10^{-3} = 8,86 \text{ Nm}$

Belastungsgrad $\Omega_2 = M_1/M_1 \text{ max} = 8,86/60 = 0,15$



M₂: Moment

M₂ max (aus 3 der Grafik MY1C/M₂) = 23,0 Nm

 $M_2 = m_2 \times g \times X = 6,525 \times 9,8 \times 29,6 \times 10^{-3} = 1,89 \text{ Nm}$

Belastungsgrad $O(3) = M_2/M_2 \text{ max} = 1,89/23,0 = 0,08$

5 Berechnung des Belastungsgrads für dynamisches Moment

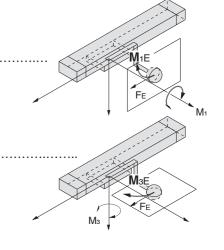
Äquivalente Last FE bei Aufprall

FE =
$$\frac{1.4}{100}$$
 x va x g x m = $\frac{1.4}{100}$ x 300 x 9.8 x 6.525 = 268.6 N

M₁E: Moment

 $M_1E \max (aus 4 der Grafik MY1C/M_1 in der 1,4 va = 420 mm/s) = 42,9 Nm$

$$M_{1}E = \frac{1}{3} \times FE \times Z = \frac{1}{3} \times 268,6 \times 37,4 \times 10^{-3} = 3,35 \text{ Nm}$$


Belastungsgrad O4 = M1E/M1E max = 3,35/42,9 = 0,08

M₃E max (aus 5 der Grafik MY1C/M₃ in der 1,4 va = 420 mm/s) = 14,3 Nm

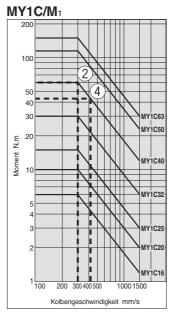
$$M_{3E} = \frac{1}{3} \times FE \times Y = \frac{1}{3} \times 268,6 \times 29,6 \times 10^{-3} = 2,65 \text{ Nm}$$

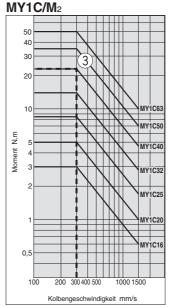
Belastungsgrad $\alpha_5 = M_3E/M_3E \text{ max} = 2,65/14,3 = 0,19$

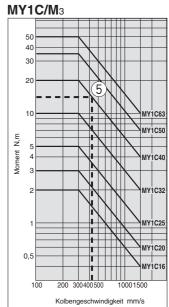
6 Summieren und Überprüfen der Belastungsgrade der Führung

 $\Sigma \alpha = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 0.72 \le 1$

Die obige Berechnung ergibt einen zulässigen Wert; das ausgewählte Modell ist verwendbar.

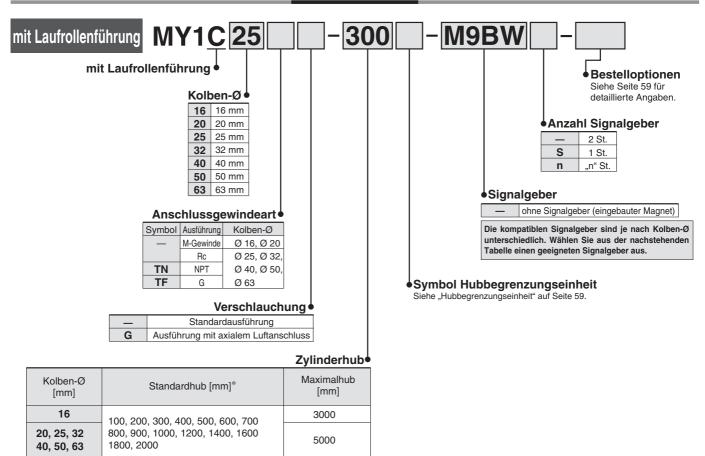

Wählen Sie einen separaten Stoßdämpfer.


Ergibt die Summe der Belastungsgrade der Führung α in der obigen Formel einen Wert größer 1, ziehen Sie eine geringere Geschwindigkeit, einen größeren Kolben- \emptyset oder eine andere Produktserie in Betracht.


Bewegte Masse

MY1 C/m₂ 100 50 40 30 988 W about 10 MY1C63 MY1C50 MY1C40 MY1C32 MY1C25 MY1C26 MY1C16 1 100 200 300 400 500 1000 1500 Kolbengeschwindigkeit mm/s

Zulässiges Moment



Kolbenstangenloser Bandzylinder mit Laufrollenführung

Serie MY1C

Ø 16, Ø 20, Ø 25, Ø 32, Ø 40, Ø 50, Ø 63

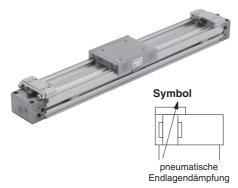
Bestellschlüssel

^{*} Hübe können von einem Mindesthub von 1 mm in 1 mm-Schritten bis zur max. Hublänge angefertigt werden. Bei einem Hub kleiner oder gleich 49 mm ist das Luftdämpfungsvermögen vermindert und es können nicht mehrere Signalgeber montiert werden. Beachten Sie diesen Punkt. Geben Sie außerdem für Hübe über 2000 mm "-XB11" am Ende der Bestellnummer an. Siehe "Bestelloptionen" für Details.

Verwendbare Signalgeber/Siehe Seiten 107 bis 117 für nähere Informationen zu Signalgebern.

			nzeige	Elektrischer	La	astspannu	ıng	5	Signalgeb	ermodel	I	Anschl	usskab	elläng	ge [m]	vorver-		
Aus- führung	Sonderfunktion	Elektrischer Eingang	bsan	Anschluss	_	C	AC	senki	recht	gera	ade	0,5	1	3	5	drahteter	zulässi	ge Last
lulliully		Lingarig	Betrie	(Ausgang)	L		AC	Ø 16, Ø 20	Ø 25 bis Ø 63	Ø 16, Ø 20	Ø 25 bis Ø 63	(—)	(M)	(L)	(Z)	Stecker		
er				3-Draht (NPN)		5 V, 12 V		M9	NV	MS	N	•			0	0	IC-Steuerung	
Signalgeber				3-Draht (PNP)		5 V, 12 V		M9	PV	MS	P	•			0	0	10-Stederding	
nal				zweidraht		12 V		M9	BV	MS)B	•			0	0	_	
Sig	D:			3-Draht (NPN)		5 V, 12 V		M9N	IWV	M9I	NW	•			0	0	IC-Steuerung	D 1
	Diagnoseanzeige (2-farbig)	Ein-	ja	3-Draht (PNP)	24 V	5 V, 12 V	_	M9P	VWV	M91	PW	•			0	0	10-Steuerung	Relais, SPS-
Sch	(Z-laibig)	gegossene Kabel		zweidraht		12 V		M9B	WV	M91	BW				0	0	_	01 0-
elektronischer		Rabei		3-Draht (NPN)		5 V, 12 V		M9N	4V**	M9N	Ι Α **	0	0		0	0	IC-Steuerung	
ktr	wasserfest (2-farbig)			3-Draht (PNP)		5 V, 12 V		M9P		M9P	A**	0	0		0	0	10-Stederding	
	(Z larbig)			zweidraht		12 V		M9B	4V **	M9B	A**	0	0		0	0	_	
alter		Ein-	ja	3-Draht (entspricht NPN)	_	5 V	_	A96V	_	A96	Z 76	•	_		-		IC-Steuerung	_
Reed-Schalter Signalgeber		gegossene	jd	zweidraht	24 V	12 V	100 V	A93V	_	A93	Z73			•			_	Relais,
Ree(Sign		Kabel	nein	Zweidiaiii	24 V	12 V	max. 100 V	A90V	_	A90	Z80		_		-		IC-Steuerung	SPS-

^{**} Wasserfeste Signalgeber können auf den o. g. Modellen montiert werden, in diesem Fall kann SMC jedoch die Wasserfestigkeit nicht garantieren. Setzen Sie sich bei Verwendung wasserfester Modelle mit den o.g. Bestellnummer mit SMC in Verbindung.


^{*} Signalgeber werden mitgeliefert (nicht montiert). (Siehe Seiten 115 bis 117 für nähere Angaben zur Signalgebermontage.)

^{*} Neben den o.g. Signalgebern können verschiedene andere verwendet werden. Weitere Einzelheiten finden Sie auf Seite 117.

Kolbenstangenloser Bandzylinder mit Laufrollenführung

Serie MY1C

Bestelloptionen: Technische Daten (Nähere Angaben finden Sie auf den Seiten 118 bis 120.)

Technische Daten
Einschraubgewinde
Langhub-Ausführung
Stoßdämpfer sanft dämpfende Ausführung Serie RJ
NBR-Beschichtung im Staubdichtband
Bohrungen für Bolzen
Kupferfrei

Technische Daten

Kolben-Ø) [mm]	16	20	25	32	40	50	63					
Medium		Druckluft											
Wirkung	sweise	doppeltwirkend											
Betriebsd	ruckbereich	0,15 bis 0,8 MPa 0,1 bis 0,8 MPa											
Prüfdrud	k	1,2 MPa											
Umgebungs-	und Medientemperatur	5 bis 60 °C											
Dämpfui	ng	pneumatische Endlagendämpfung											
Schmier	ung		lel	bensdaue	rgeschmie	ert							
Hubtolera	anz	max. $1000^{+1.8}_{0}$ 1001 bis $3000^{+2.8}_{0}$		bis 27	00 +1,8 , 270	01 bis 500	00 +2,8						
Luft- anschluss-	Anschluss vorn/seitlich	M5 x 0,8		Rc	1/8	Rc 1/4	Rc	3/8					
größe	Ausgang unten	Ø 4		Ø	6	Ø 8	Ø	10					

Kolbengeschwindigkeit

Ko	olben-Ø [mm]	16 bis 63			
ohne Hubbegren	zungseinheit	100 bis 1000 mm/s			
Hubbegrenzungs-	Einheit A	100 bis 1000 mm/s ⁽¹⁾			
einheit	Einheit L und Einheit H	100 bis 1.500 mm/s ⁽²⁾			

Anm. 1) Beachten Sie, dass die Dämpfungskapazität abnimmt, wenn der Hubeinstellbereich durch Einstellen des Anschlagbolzens vergrößert wird. Wird der auf Seite 62 angegebene Dämpfungshubbereich überschritten, sollte die Kolbengeschwindigkeit 100 bis 200 mm pro Sekunde betragen.

Anm. 2) Bei der Ausführung mit zentralem Luftanschluss beträgt die Kolbengeschwindigkeit 100 bis 1000 mm/s. Anm. 3) Betreiben Sie den Zylinder mit einer Geschwindigkeit innerhalb des Bereichs der Beschichtung. Siehe Seite

Technische Daten Hubbegrenzungseinheit

1001111100110	Commodite Batem Habbegrenzangoemment																				
Kolben-Ø [mm]]	1	6		20			25			32			40			50			63	
Einheitssymb	ol	Α	L	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н
Konfiguration Stoßdämpferr	modell	bolzen	RB 0806 Mit Einstell- bolzen	holzon	RB 0806 Mit Einstell- bolzen	RB 1007 Mit Einstell- bolzen	holzon	RB 1007 Mit Einstell- bolzen	RB 1412 Mit Einstell- bolzen	holzon	RB 1412 Mit Einstell- bolzen	RB 2015: Mit Einstell- bolzen	holzon	RB 1412 Mit Einstell- bolzen	RB 2015: Mit Einstell- bolzen	holzon	RB 2015: Mit Einstell- bolzen		Mit Einstell- bolzen	RB 2015: Mit Einstell- bolzen	RB 2725 Mit Einstell- bolzen
Hub-Einstellbereich ohne D	Distanzstück	0 bis	-5,6	С) bis –6	6	0 b	is –11	,5	0	bis -1	2	0	bis -1	6	0	bis -2	0	0	bis –2	5
	em Zwischenstück	-5,6 bis	s –11,2	-6	bis –1	2	-11	,5 bis -	-23	-1	2 bis –	24	-1	6 bis –	32	-2	0 bis –	40	-2	5 bis –	50
[mm] mit langer	em Zwischenstück	–11,2 bi	is –16,8	-13	2 bis –	18	-23	bis –3	4,5	-2	4 bis -	36	-3	2 bis –	48	-4	0 bis –	60	-5	0 bis –	75

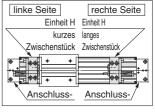
^{*} Der Hubeinstellbereich gilt für eine Seite bei Montage auf einem Zylinder.

Symbol Hubbearenzungseinheit

Zwischen-stück Zwischén-stück Zwis	
ohne Einheit A: Mit Anschlagbolzen wit kurzem Zwischen- stück stück stück SASSAS SAS SAS SISSAS	zen mit langem Zwischen-
Zwischen- stück ztück	Zwischen-
SA SA SA SA SA SA SA SA	
A: Mit Anschlagbolzen AS A AA6 AA7 AL AL6 AL7 AH AH6 mit kurzem Zwischenstück A6S A6A A6 A6A7 A6L A6L6 A6L7 A6H A6H6	SH7
mit kurzem Zwischenstück A6S A6A A6 A6A7 A6L A6L6 A6L7 A6H A6H6	AH7
(D)	A6H7
mit langem Zwischenstück A7S A7A A7A6 A7 A7L A7L6 A7L7 A7H A7H6	A7H7
E. Mit Stoßdämpfer für geringe LS LA LA6 LA7 L LL6 LL7 LH LH6	LH7
Lasten + mit kurzem Zwischenstück L6S L6A L6A6 L6A7 L6L L6 L6L7 L6H L6H6	L6H7
Anschlagbolzen mit langem Zwischenstück L7S L7A L7A6 L7A7 L7L L7L6 L7 L7H L7H6	L7H7
H: Mit Stoßdämpfer für schwere HS HA HA6 HA7 HL HL6 HL7 H HH6	HH7
Lasten + einstellbarer mit kurzem Zwischenstück H6S H6A H6A6 H6A7 H6L H6L6 H6L7 H6H H6	Н6Н7
Anschlagbolzen mit langem Zwischenstück H7S H7A H7A6 H7A7 H7L H7L6 H7L7 H7H H7H6	

^{*} Die Zwischenstücke fixieren die Hubbegrenzungseinheit in Zwischenhubposition.

Stoßdämpfer für die Einheiten L und H


Ausführung	Hub Einstellung	Kolbert-S [IIIII]									
	Einheit	16	20	25	32	40	50	63			
Standard (Stoßdämpfer/ Serie RB)	L	RB0806		RB1007	RB1412		RB2015				
	Н	— RB1007		RB1412	RB2015		RB2725				
Stoßdämpfer/	L	RJ08	306H	RJ1007H	RJ14	112H	_	_			
sanft dämpfende Ausführung Serie RJ montiert (-XB22)	Н	_	RJ1007H	RJ1412H	_	_	_	_			

^{*} Die Lebensdauer des Stoßdämpfers entspricht je nach Betriebsbedingungen nicht der Lebensdauer der MY1C-Zylinder. Entnehmen Sie die Austauschintervalle den Produktspezifischen Sicherheitshinweisen der Serie RB.

Montagezeichnung Hubbegrenzungseinheit

Anbaubeispiel H6H7

Technische Daten Stoßdämpfer

Мо	RB 0806	RB 1007	RB 1412	RB 2015:	RB 2725	
max. Energie	2,9	5,9	19,6	58,8	147	
Hubdämpfu	6	7	12	15	25	
max. Aufpraligesci	1500					
max. Schaltfrequ	enz [Zyklus/min]	80	70	45	25	10
Federkraft	Federkraft ausgefahren		4,22	6,86	8,34	8,83
[N]	eingefahren	4,22	6,86	15,98	20,50	20,01
Betriebstempera	5 bis 60					

^{*} Stoßdämpfer/sanft dämpfende Serie RJ montiert (-XB22) als Bestelloption erhältlich.

Serie MY1C

Theoretische Leistung

								[N]
Kolben-Ø [mm]	Kolben- fläche			Betrie	bsdruck	[MPa]		
[mm]	[mm ²]	0,2	0,3	0,4	0,5	0,6	0,7	0,8
16	200	40	60	80	100	120	140	160
20	314	62	94	125	157	188	219	251
25	490	98	147	196	245	294	343	392
32	804	161	241	322	402	483	563	643
40	1256	251	377	502	628	754	879	1005
50	1962	392	588	784	981	1177	1373	1569
63	3115	623	934	1246	1557	1869	2180	2492

Anm.) Theoretische Zylinderkraft [N] = Druck [MPa] x Kolbenfläche [mm²]

Gewicht


							[kg]
Kolben-Ø		zusätzliches Gewicht je	Gewicht der beweglichen	Gewicht des Stützelements (pro Set)	Gewicht der	Hubbegrenz (je Einheit)	ungseinheit
[mm]	wicht	50 mm Hub		Ausführung A und B	Gewicht der Einheit A	Gewicht Einheit L	Gewicht Einheit H
16	0,67	0,12	0,22	0,01	0,03	0,04	
20	1,06	0,15	0,31	0,02	0,04	0,05	0,08
25	1,58	0,24	0,41	0,02	0,07	0,11	0,18
32	3,14	0,37	0,86	0,04	0,14	0,23	0,39
40	5,60	0,52	1,49	0,08	0,25	0,34	0,48
50	10,14	0,76	2,59	0,08	0,36	0,51	0,81
63	16,67	1,10	4,26	0,17	0,68	0,83	1,08

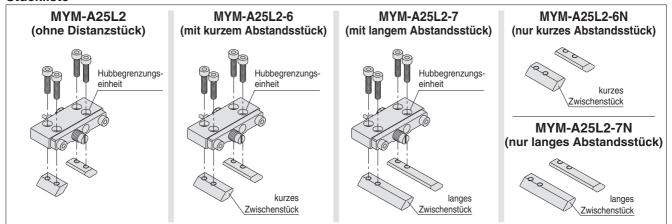
Berechnung: (Beispiel) MY1C25-300A

- 0.24 kg x 300/50 + 2 x 0.07 kg = 1.58 kg
- Gewicht 3,16 kg

Option

Bestellnummer Hubbegrenzungseinheit

Anm. 1) Für nähere Angaben zum Einstellbereich siehe Seite 59.


rechts

Anm. 2) Einheiten A und L nur für Ø 16

Zwischenhubposition.

* Die Zwischenstücke werden für ein 2-er Set geliefert.

Stückliste

Bestellnummer Stützelement

Kolben-Ø [mm]	16	20	25	32	40	50	63
Stützelement A	MY-S16A	MY-S20A	MY-S25A	MY-S32A	MY-S40A		MY-S63A
Stützelement B	MY-S16B	MY-S20B	MY-S25B	MY-S32B	MY-S40B		MY-S63B

Für weitere Informationen zu Abmessungen usw. siehe Seite 71.

Ein Stützelement-Set enthält jeweils ein Element für die linke und für die rechte Seite.

Dämpfungskapazität

Auswahl der Dämpfung

Die kolbenstangenlosen Bastandardgemäß mit einer pneumatischen Dämpfung ausgestattet.

Der Mechanismus der pneumatischen Dämpfung dient zur Vermeidung eines zu starken Aufpralls des Kolbens am Hubende bei hohen Geschwindigkeiten. Die pneumatische Dämpfung dient nicht ďazu, den Kölben zum Hubende hin abzubrem-

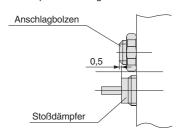
Die von der pneumatischen Dämpfung absorbier-baren Last- und Geschwindigkeitsbereiche werden in den Grafiken gezeigt.

<Hubeinstelleinheit mit Stoßdämpfer>

Verwenden Sie diese Einheit, wenn Sie den Zylinder mit einer Last oder Geschwindigkeit Zylinder fillt einer Last oder Geschwindigkeit betreiben, die die Grenzwerte der pneumatischen Dämpfung überschreiten oder wenn eine Dämpfung erforderlich ist, weil der Zylinderhub aufgrund der Hubeinstellung außerhalb des effektiven Dämpfungshubbereichs der pneuma-tischen Dämpfung liegt.

L-Einheit

Verwenden Sie diese Einheit, wenn der Zylinderhub außerhalb des effektiven Dämpfungsbe-reichs der pneumatischen Dämpfung liegt, selbst wenn die Last und die Geschwindigkeit innerhalb der Grenzwerte der pneumatischen Dämpfung liegen oder wenn der Zylinder in einem Last- und Geschwindigkeitsbereich betrieben wird, der über den Grenzwerten der pneumatischen Dämpfung und unterhalb der der L-Einheit liegt

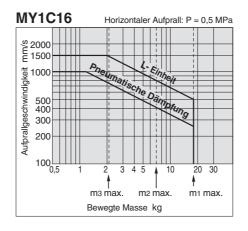

H-Einheit

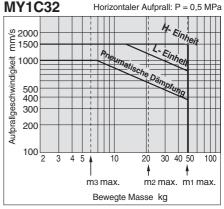
Verwenden Sie diese Einheit, wenn der Zylinder in einem Last- und Geschwindigkeitsbereich betrieben wird, der über den Grenzwerten der L-Einheit und unter denen der H-Einheit liegt.

Achtung

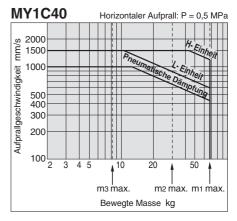
1. Beachten Sie die unten stehende Abbildung, wenn der Anschlagbolzen zur Hubeinstellung verwendet wird.

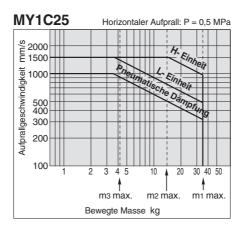
Die Dämpfungskapazität nimmt drastisch ab, wenn der effektive Hub des Stoßdämpfers aufgrund der Hubeinstellung verkürzt wird. Ziehen Sie den Anschlagbolzen in der Position fest, in der er ca. 0,5 mm über den Stoßdämpfer hinausragt.

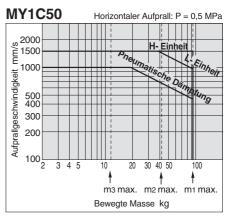


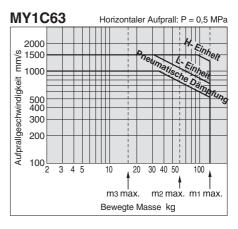

2. Der Stoßdämpfer darf nicht zusammen mit der pneumatischen Dämpfung eingesetzt werden.

Pneumatischer Dämpfungshub Einheit: mm


Kolben-Ø	Dämpfungshub
16	12
20	15
25	15
32	19
40	24
50	30
63	37


Dämpfungskapazität der pneumatischen Dämpfung und der Hubeinstelleinheiten





Anzugsmoment der Halteschraube der Hubeinstelleinheit Einheit: Nm

	Eine breite	A
Kolben-Ø [mm]	Einheit	Anzugsmoment
16	A	0,6
10	L	0,0
	Α	
20	L	1,5
	Н	
	Α	2.0
25	L	3,0
	Н	5,0
	Α	E 0
32	L	5,0
	Н	12
	Α	
40	L	12
	Н	
	Α	
50	L	12
	Н	
	Α	
63	L	24
	Н	

Anzugsmoment der Halteschraube der

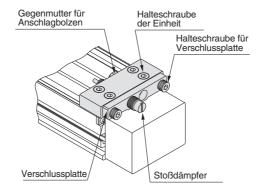
Hubeinstelleinheit-Verschlussplatte Einheit: Nm

Kolben-Ø [mm]	Einheit	Anzugsmoment
25	L	1,2
25	Н	3,3
32	L	3,3
32	Н	10
40	L	3,3
40	Н	10

Berechnung der Dämpfungsenergie für Hubeinstelleinheit mit Stoßdämpfer

	Horizontal	Vertikal (nach unten)	Vertikal (nach oben)
Art des Aufpralls	<u>s</u>	U m s	
Kinetische Energie E ₁		$\frac{1}{2}$ m· V^2	
Schub- energie E ₂	F∙s	F·s + m·g·s	F·s – m·g·s
Absorbierte Energie E		E1 + E2	

Symbole


- U: Schlittengeschwindigkeit [m/s]
- m: Masse des aufprallenden Objekts [kg]
- F: Zylinderschub [N]
- g: Gravitationsbeschleunigung [9,8 m/s²]
- s: Stoßdämpferhub [m]
- Anm.) Die Geschwindigkeit des Schlittens ist zum Zeitpunkt des Aufpralls am Stoßdämpfer gemessen.

⚠ Produktspezifische Sicherheitshinweise

Achtung

Seien Sie vorsichtig, dass Ihre Hände nicht in der Einheit eingeklemmt werden.

 Bei Verwendung eines Produkts mit Hubeinstelleinheit verringert sich der Raum zwischen dem Schlitten und der Hubeinstelleinheit, so dass die Hände eingeklemmt werden könnten. Bringen Sie deshalb eine Schutzabdeckung an, um einen direkten Kontakt auszuschliessen.

<Befestigung der Einheit>

Die Einheit kann durch gleichmäßiges Anziehen der vier Halteschrauben fixiert werden.

Achtung

Befestigen Sie die Hubeinstelleinheit nicht in einer Zwischenposition.

Wenn die Hubeinstelleinheit in einer Zwischenposition befestigt wird, können, abhängig von der beim Aufprall frei werdenden Energie, Slip-Effekte auftreten. In diesem Fall empfehlen wir die Verwendung der Befestigungselemente für den Anschlagbolzen, die als Bestelloptionen -X 416 und -X 417 erhältlich sind. Wenden Sie sich für andere Längen an SMC. (Siehe "Anzugsmoment der Halteschraube der Hubeinstelleinheit".)

< Hubeinstellung mit Anschlagbolzen>

Lösen Sie die Gegenmutter des Anschlagbolzens und stellen Sie dann den Hub von der Seite der Verschlussplatte aus mit einem Schraubenschlüssel ein. Ziehen sie die Gegenmutter wieder fest.

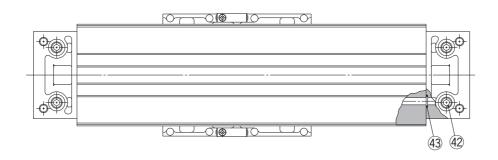
< Hubeinstellung mit Stoßdämpfer>

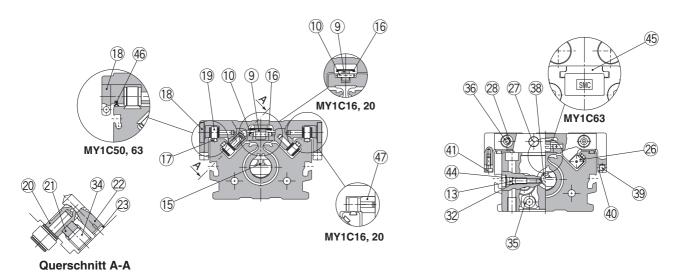
Lösen Sie die zwei Halteschrauben der Verschlussplatte und stellen Sie dann den Hub durch Drehen des Stoßdämpfers ein. Ziehen Sie anschließend die Halteschrauben der Ver-schlussplatte gleichmäßig fest, um den Stoßdämpfer zu fixieren.

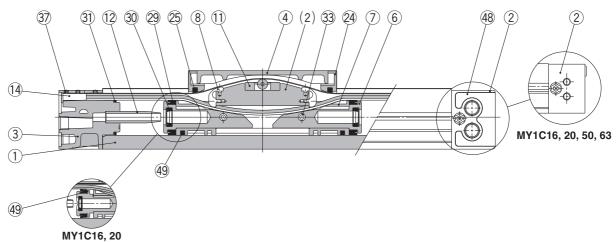
Achten Sie darauf, die Halteschrauben nicht übermäßig festzuziehen. (Außer Ø 16, Ø 20, Ø 50, Ø 63)

(Siehe "Anzugsdrehmoment der Halteschraube der Hubeinstelleinheit-Verschlussplatte ".)

Anm.)


Durch das Festziehen der Halteschrauben der Verschlussplatte kann diese leicht durchgebogen werden. Dies hat jedoch keinerlei Auswirkung auf den Stoßdämpfer und die Funktion der Platte.




Serie MY1C

Konstruktion: Ø 16 bis Ø 63

MY1C16 bis 63

MY1C16 bis 63

Stückliste

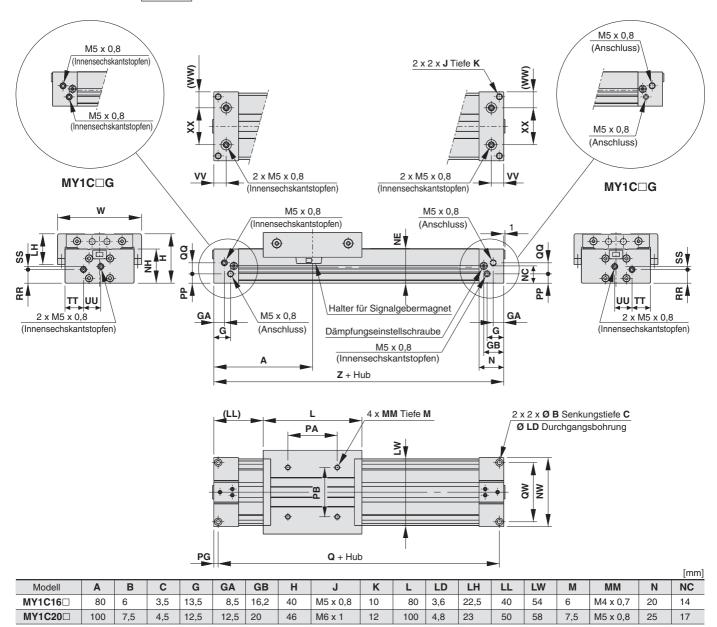
Nr.	Bezeichnung	Material	Anm.
1	Zylinderrohr	Aluminiumlegierung	harteloxiert
2	Zylinderdeckel WR	Aluminiumlegierung	lackiert
3	Zylinderdeckel WL	Aluminiumlegierung	lackiert
4	Schlitten	Aluminiumlegierung	chemisch vernickelt
5	Mitnehmer	Aluminiumlegierung	chromatiert
6	Kolben	Aluminiumlegierung	chromatiert
7	Kolbenführungsband	Spezialkunststoff (PBT)	
8	Riementrenner	Spezialkunststoff (PBT)	
9	Führungsrolle	Spezialkunststoff (PBT)	
10	Führungsrollenwelle	rostfreier Stahl	
11	Kupplung	gesintertes Eisenmetall	
12	Dämpfungshülse	Aluminiumlegierung	eloxiert
13	Dämpfungseinstellschraube	Walzstahl	vernickelt
14	Riemenklemmung	Spezialkunststoff (PBT)	
17	Schiene	gehärteter Stahldraht	
18	Kappe Kreuzrolle	Spezialkunststoff (PBT)	(Ø 25 bis Ø 40)
19	Kreuzrolle	_	
20	Exzenterzahnrad	rostfreier Stahl	
21	Exzenterhalter	rostfreier Stahl	
22	Einstellzahnrad	rostfreier Stahl	
23	Sicherungsring	rostfreier Stahl	

Nr.	Bezeichnung	Material	Anm.
24	Endabdeckung	Spezialkunststoff (PBT)	
26	Rückführplatte	Spezialkunststoff (PBT)	
27	Stopper	Kohlenstoffstahl	vernickelt
28	Distanzstück	rostfreier Stahl	
33	Federstift	Werkzeugstahl	
34	Innensechskantschraube	Chrommolybdänstahl	schwarz verzinkt und chromatiert
35	Innensechskantschraube	Chrommolybdänstahl	vernickelt
36	Innensechskantschraube	Chrommolybdänstahl	vernickelt
37	Innensechskantschraube	Chrommolybdänstahl	schwarz verzinkt und chromatiert/vernickelt
38	konischer Innensechskantstopfen	Kohlenstoffstahl	vernickelt
39	Magnet		
40	Magnethalter	Spezialkunststoff (PBT)	
41	Innensechskantschraube	Chrommolybdänstahl	vernickelt
42	konischer Innensechskantstopfen	Kohlenstoffstahl	vernickelt
44	Sicherungsring Ausführung CR	Federstahl	
45	Kopfplatte	Aluminiumlegierung	harteloxiert (Ø 63)
46	Abstreifer seitlich	Spezialkunststoff (PBT)	(Ø 50 bis Ø 63)
47	Buchse	Aluminiumlegierung	(Ø 16 bis Ø 20)
48	Anschlussabdeckung	Spezialkunststoff (PBT)	(Ø 25 bis Ø 40)
49	Schmutzabstreifer	Spezialkunststoff (PBT)	

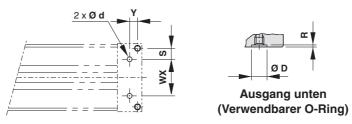
Ersatzteile: Dichtsatz

Nr.	Bezeichnung	Menge	MY1C16	MY1C20	MY1C25	MY1C32	MY1C40	MY1C50	MY1C63
15	Dichtungsriemen	1	MY16-16C-Hub	MY20-16C-Hub	MY25-16C-Hub	MY32-16C-Hub	MY40-16C-Hub	MY50-16C-Hub	MY63-16A-Hub
16	Staubschutzband	1	MY16-16B-Hub	MY20-16B-Hub	MY25-16B-Hub	MY32-16B- Hub	MY40-16B-Hub	MY50-16B-Hub	MY63-16B-Hub
20	O-Ring		KA00309	KA00311	KA00311	KA00320	KA00402	KA00777	KA00777
32	O-King	2	(Ø 4 x Ø 1,8 x Ø 1,1)	(Ø 5,1 x Ø 3 x Ø 1,05)	(Ø 5,1 x Ø 3 x Ø 1,05)	(Ø 7,15 x Ø 3,75 x Ø 1,7)	(Ø 8,3 x Ø 4,5 x Ø 1,9)	_	_
46	Abstreifer seitlich	2	_	_	_	_	_	MYM50-15CK0502B	MYM63-15CK0503B
25	Abstreifer	2							
29	Kolbendichtung	2							
30	Dämpfungsdichtung	2	MY1M16-PS	MY1M20-PS	MY1M25-PS	MY1M32-PS	MY1M40-PS	MY1M50-PS	MY1M63-PS
31	Zylinderrohrdichtung	2							
43	O-Ring	4							

^{*} Die Dichtsätze bestehen jeweils aus den Artikeln 25, 29, 30, 30 und 43. Bestellen Sie den Dichtsatz entsprechend des jeweiligen Kolbendurchmessers.

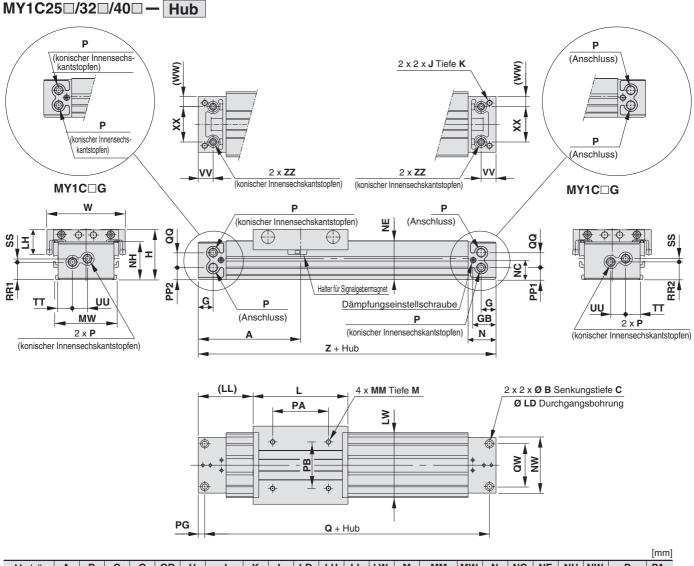

Die Dichtsätze enthalten einen Beutel mit Fett (10 g).
Wenn, (§) und (§) getrennt geliefert werden, ist Beutel mit Fett enthalten. (10 g per 1000 Hübe)
Mit folgender Bestellnummer können Sie Beutel mit Fett separat bestellen: **GR-S-010** (10 g), **GR-S-020** (20 g)

Anm.) Es sind zwei Typen des Staubschutzbands erhältlich. Überprüfen Sie, welcher Typ verwendet werden soll, da die Bestellnummer entsprechend der Oberflächenbehandlung der Innensechskanteinstellschraube unterschiedlich ist. ③.


A: Schwarz verzinkt \rightarrow MY \square -16B-Hub, B: vernickelt \rightarrow MY \square -16BW-Hub

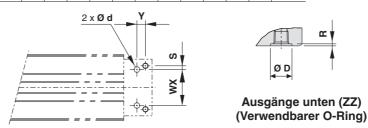
MY1C16□/20□ - Hub

																			[mm]
Modell	NE	NH	NW	PA	PB	PG	PP	Q	QQ	QW	RR	SS	TT	UU	VV	W	ww	XX	Z
MY1C16□	28	27,7	56	40	40	3,5	7,5	153	9	48	11	2,5	15	14	10	68	13	30	160
MY1C20□	34	33,7	60	50	40	4,5	11,5	191	10	45	14,5	5	18	12	12,5	72	14	32	200



Bohrungsgröße für zentralen Luftanschluss an der Unterseite

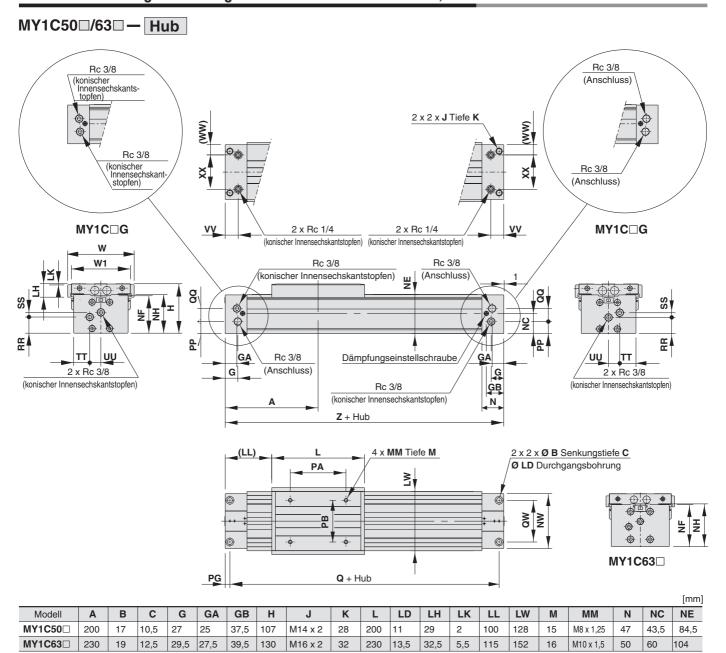
Modell	WX	Υ	S	d	D	R	Verwendbarer O-Ring
MY1C16□	30	6,5	9	4	8,4	1,1	C6
MY1C20□	32	8	6,5	4	8,4	1,1	00


Standardausführung/Ausführung mit axialem Luftanschluss Ø 25, Ø 32, Ø 40 Für Varianten des axialen Luftanschlusses siehe Seite 122.

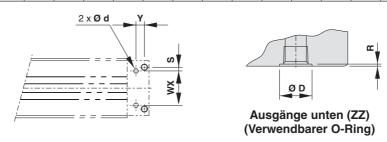
Modell LW MM NH NW PA Α В С G GB Н K LD LH LL М MW Ν NC NE MY1C25□ 110 60 9 5,5 17 24,5 54 M6 x 1 9,5 102 5,6 27 59 70 10 M5 x 0,8 66 30 21 41,8 40,5 60 Rc 1/8 MY1C32□ 140 11 6,5 19 30 68 M8 x 1,25 16 132 6,8 35 74 88 13 M6 x 1 80 37 52,3 50 74 Rc 1/8 80 M10 x 1,5 15 **MY1C40**□ 170 14 8,5 23 36,5 84 162 8,6 38 89 104 13 M6 x 1 65,3 63,5 94 Rc 1/4 | 100

"P" steht für den Zylinder-Versorgungsanschluss.

																		[mm]
Modell	PB	PG	PP1	PP2	Q	QQ	QW	RR1	RR2	SS	TT	UU	VV	W	ww	XX	Z	ZZ
MY1C25□	50	7	12,7	12,7	206	15,5	46	18,9	17,9	4,1	15,5	16	16	84	11	38	220	Rc 1/16
MY1C32□	60	8	15,5	18,5	264	16	60	22	24	4	21	16	19	102	13	48	280	Rc 1/16
MY1C40□	80	9	17,5	20	322	26	72	25,5	29	9	26	21	23	118	20	54	340	Rc 1/8


Bohrungsgröße für zentralen Luftanschluss an der Unterseite

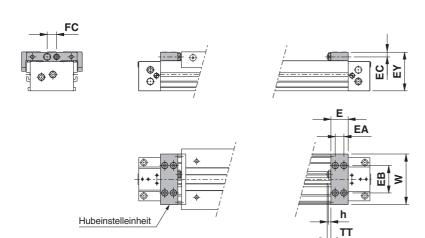
	Modell	WX	Υ	S	d	D	R	Verwendbarer O-Ring
	MY1C25□	38	9	4	6	11,4	1,1	C0
Ī	MY1C32□	48	11	6	6	11,4	1,1	C9
_	MY1C40□	54	14	9	8	13,4	1,1	C11,2

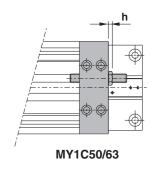


Serie MY1C

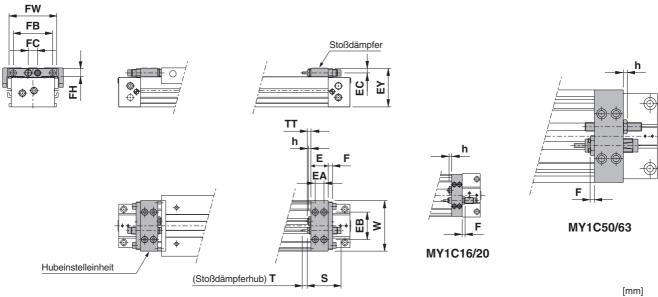
Standardausführung/Ausführung mit axialem Luftanschluss Ø 50, Ø 63 Für Varianten des axialen Luftanschlusses siehe Seite 122.

																				[mm]
Modell	NF	NH	NW	PA	РВ	PG	PP	Q	QQ	QW	RR	SS	TT	UU	VV	W	W1	ww	XX	Z
MY1C50□	81	83,5	118	120	90	10	26	380	28	90	35	10	35	24	28	144	128	22	74	400
MY1C63□	103	105	142	140	110	12	42	436	30	110	49	13	43	28	30	168	152	25	92	460


Bohrungsgröße für zentralen Luftanschluss an der Unterseite

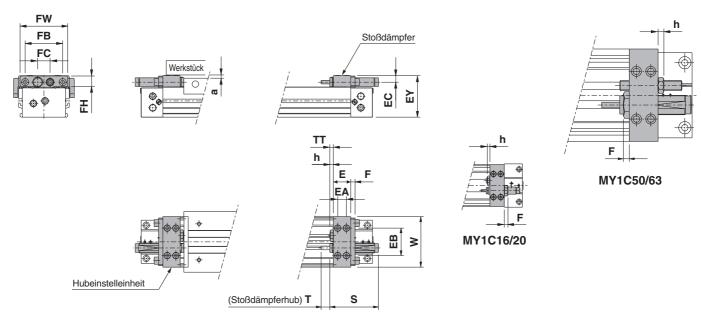

Modell	wx	Υ	S	d	D	R	Verwendbarer O-Ring
MY1C50□	74	18	8	10	17,5	1,1	C15
MY1C63□	92	18	9	10	17,5	1,1	015

Hubeinstelleinheit


Mit einstellbarem Anschlagbolzen MY1C Kolben-Ø □ — Hub

Modell	Е	EA	EB	EC	EY	FC	h	TT	W
MY1C16	14,6	7	30	5,8	39,5	14	3,6	5,4 (max. 11)	58
MY1C20	20	10	32	5,8	45,5	14	3,6	5 (max. 11)	58
MY1C25	24	12	38	6,5	53,5	13	3,5	5 (max. 16,5)	70
MY1C32	29	14	50	8,5	67	17	4,5	8 (max. 20)	88
MY1C40	35	17	57	10	83	17	4,5	9 (max. 25)	104
MY1C50	40	20	66	14	106	26	5,5	13 (max. 33)	128
MY1C63	52	26	77	14	129	31	5,5	13 (max. 38)	152

Stoßdämpfer für leichte Lasten + einstellb. Anschlagbolzen MY1C Kolben-Ø □ — Hub L

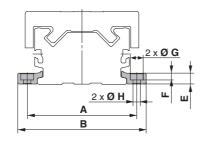

Modell	Е	EA	EB	EC	EY	F	FB	FC	FH	FW	h	S	Т	TT	W	Modell Stoßdämpfer
MY1C16	14,6	7	30	5,8	39,5	4		14			3,6	40,8	6	5,4 (max. 11)	58	RB0806
MY1C20	20	10	32	5,8	45,5	4		14	_		3,6	40,8	6	5 (max. 11)	58	RB0806
MY1C25	24	12	38	6,5	53,5	6	54	13	13	66	3,5	46,7	7	5 (max. 16,5)	70	RB1007
MY1C32	29	14	50	8,5	67	6	67	17	16	80	4,5	67,3	12	8 (max. 20)	88	RB1412
MY1C40	35	17	57	10	83	6	78	17	17,5	91	4,5	67,3	12	9 (max. 25)	104	RB1412
MY1C50	40	20	66	14	106	6		26			5,5	73,2	15	13 (max. 33)	128	RB2015
MY1C63	52	26	77	14	129	6		31			5,5	73,2	15	13 (max. 38)	152	RB2015

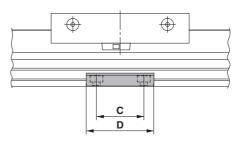
Serie MY1C

Hubeinstelleinheit

Stoßdämpfer für schwere Lasten + einstellb. Anschlagbolzen

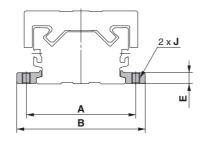
MY1C Kolben-Ø □ — Hub H

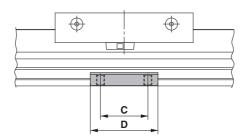

* Da die Abmessung EY der H-Einheit größer als die obere Höhe des Schlittens (Abmessung H) ist, muss bei der Montage eines Werkstücks, das über die Gesamt-länge (Abmessung L) des Schlittens hinausragt , ein Spiel mit min. Abmessung "a" an der Werkstückseite gelassen werden.


Modell	Е	EA	EB	EC	EY	F	FB	FC	FH	FW	h	S	Т	TT	W	Modell Stoßdämpfer	а
MY1C20	20	10	32	7,7	50	5		14			3,5	46,7	7	5 (max. 11)	58	RB1007	5
MY1C25	24	12	38	9	57,5	6	52	17	16	66	4,5	67,3	12	5 (max. 16,5)	70	RB1412	4,5
MY1C32	29	14	50	11,5	73	8	67	22	22	82	5,5	73,2	15	8 (max. 20)	88	RB2015	6
MY1C40	35	17	57	12	87	8	78	22	22	95	5,5	73,2	15	9 (max. 25)	104	RB2015	4
MY1C50	40	20	66	18,5	115	8		30			11	99	25	13 (max. 33)	128	RB2725	9
MY1C63	52	26	77	19	138,5	8		35		_	11	99	25	13 (max. 38)	152	RB2725	9,5

Befestigungselement

Befestigungselement A

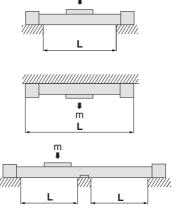

MY-S□A

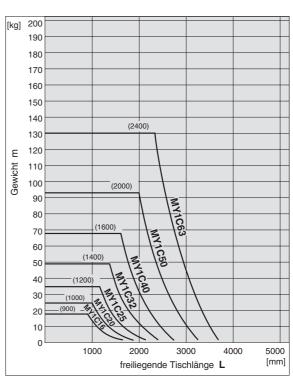


Befestigungselement B

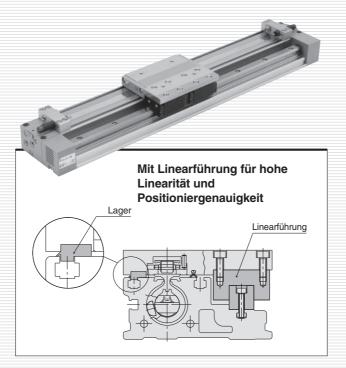
MY-S□B

										[mm]
Model	Verwendbarer Zylinder	Α	В	С	D	Е	F	G	Н	J
MY-S16A	MY1C16	61	71,6	15	26	4,9	3	6,5	3,4	M4 x 0,7
MY-S20 ^A	MY1C20	67	79,6	25	38	6,4	4	8	4,5	M5 x 0,8
MY-S25A	MY1C25	81	95	35	50	8	5	9,5	5,5	M6 x 1
MY-S32Å	MY1C32	100	118	45	64	11,7	6	11	6.6	M8 x 1,25
MY-S40 ^A	MY1C40	120	142	55	80	14,8	8,5	14	9	M10 x 1,5
	MY1C50	142	164							
MY-S63A	MY1C63	172	202	70	100	18,3	10,5	17,5	11,5	M12 x 1,75

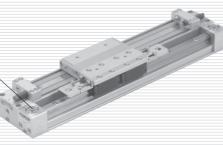

^{*} Eine Reihe von Befestigungselement besteht aus einem linken Träger und eine richtige Unterstützung.


Hinweise zur Verwendung des Befestigungselements

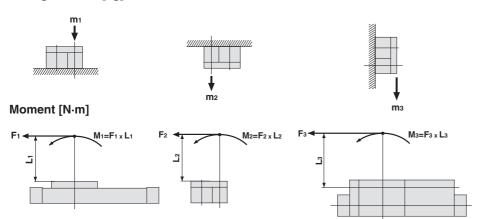
Bei Betrieb mit Langhub kann eine Durchbiegung des Zylinderrohrs abhängig von dessen Eigengewicht und dem Werkstückgewicht auftreten. In diesem Fall sollte ein Befestigungselement in der Hubmitte eingesetzt werden. Die Länge (L) des Befestigungselements darf die in der Grafik rechts gezeigten Werte nicht überschreiten.


Achtung

- Bei ungenauer Bemessung der Montageflächen des Zylinders kann die Verwendung eines Befestigungselements zu einer verminderten Zylinderleistung führen.
 Achten Sie deshalb darauf, das Zylinderrohr bei der Montage zu nivellieren. Bei Betrieb mit Langhub unter Einwirkung von Vibrationen und Stößen wird der Einsatz eines Befestigungselements auch dann empfohlen, wenn dessen Länge außerhalb des in der Grafik gezeigten Bereichs liegt.
- 2. Die Befestigungselemente dienen nicht zur Montage.



Ausführung mit Endlagenverriegelung zum Halten einer Position am Hubende (außer Kolben- Ø 10)


Serie MY1H Vor der Inbetriebnahme

maximales erlaubtes Moment / Maximal bewegbare Masse

Madall	Kolben-Ø	Max. zulä	assiges Mom	ent [N·m]	Maximale	bewegte M	lasse [kg]
Modell	[mm]	M1	M2	Мз	m ₁	m ₂	тз
	10	0,8	1,1	0,8	6,1	6,1	6,1
MY1H	16	3,7	4,9	3,7	10,8	10,8	10,8
	20	11	16	11	17,6	17,6	17,6

Die obigen Werte sind die maximal zulässigen Werte für das Moment und die Last. Entnehmen Sie den jeweiligen Diagrammen das maximal zulässige Moment und die maximal zulässige Last für spezifische Kolbengeschwindigkeiten.

Bewegte Masse [kg]

Berechnung des Belastungsgrads der Führung

- Zur Durchführung der Auswahlkalkulation müssen max. zulässige Last (1), statisches Moment (2) und dynamisches Moment (3) (zum Zeitpunkt des Aufpralls auf den Stopper) überprüft werden.
 - * Verwenden Sie für die Auswertung va (Durchschnittsgeschwindigkeit) für (1) und (2) und v (Aufprallgeschwindigkeit v = 1,4va) für (3). Berechnen Sie mmax für (1) aus dem Diagramm der max. zulässigen Last (m₁, m₂, m₃) und Mmax für (2) und (3) aus dem Diagramm für das max. zulässige Moment (M₁, M₂, M₃).

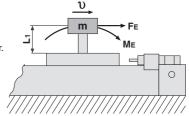
- Anm. 1) Durch die Last usw. im Ruhezustand des Zylinders erzeugtes Moment
- Anm. 2) Durch die Stoßbelastung am Hubende erzeugtes Moment (bei Aufprall am Anschlag)
- Anm. 3) Je nach Werkstückform können mehrere Momente auftreten. In diesem Fall entspricht die Summe der Belastungsgrade (Σα) der Summe aller Momente.
- 2. Referenzformeln (dynamisches Moment bei Aufprall)

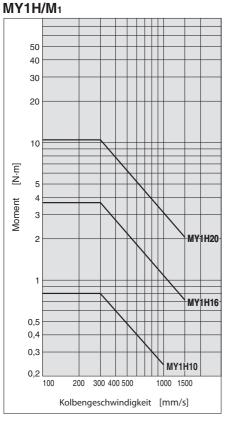
Verwenden Sie folgende Formeln zur Berechnung des dynamischen Moments unter Berücksichtigung des Aufpralls am Stopper.

- m: Bewegte Masse [kg]
- F: Last [N]
- FE: Äquivalente Last zum Aufprall (beim Anstoßen an den Stopper) [N]
- $\label{eq:constraints} \mbox{\it υa: Durchschnittsgeschwindigkeit [mm/s]$}$
- M: Statisches Moment [N·m]

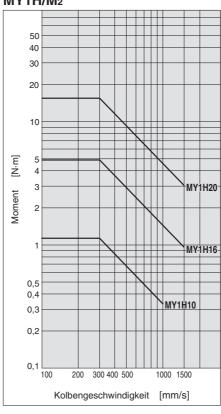
$$\upsilon = \text{1,4$$$$$}\upsilon = \text{1,4$$$$$}\upsilon \text{a.6}\cdot\text{m.9}$$

$$\therefore \mathbf{M}_{E} = \frac{1}{3} \cdot F_{E} \cdot L_{1} = 4,57 \Delta m L_{1} [N \cdot m]$$

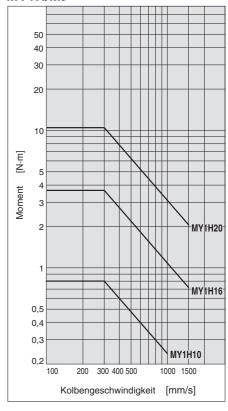

- $\upsilon \text{: Aufprallgeschwindigkeit [mm/s]}$
- L1: Abstand zum Schwerpunkt [m]
- ME: Dynamisches Moment [N·m]
- δ: Dämpfungskoeffizient
 - Mit elastischer Dämpfscheibe = 4/100 (MY1B10, MY1H10)
 - Mit pneumatischer Dämpfung = 1/100 Mit Stoßdämpfer = 1/100
- g: Erdbeschleunigung (9,8 m/s²)
- Anm. 4) 1,4 Vaδ ist ein dimensionsloser Koeffizient zur Berechnung der Stoßkraft.
- Anm. 5) Mittlerer Lastkoeffizient (=\frac{1}{2}): Dieser Koeffizient dient zur Ermittlung des Durchschnitts des max. Lastmoments beim Aufprall auf den Anschlag unter Berücksichtigung der Kalkulation der Lebensdauer.
- 3. Nähere Angaben zur Modellauswahl finden Sie auf den Seiten 76 und 77.

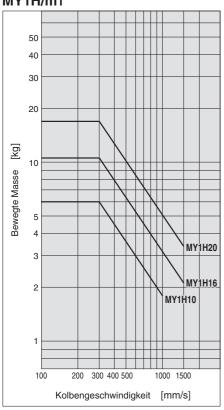

maximales erlaubtes Moment

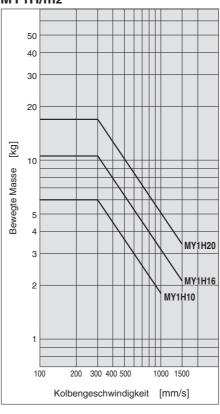
Wählen Sie ein Moment, das innerhalb der in den Grafiken gezeigten Betriebsbereichsgrenzen liegt. Beachten Sie, dass der Wert der max. zulässigen Last manchmal überschritten werden kann, auch wenn er innerhalb der in den Grafiken gezeigten Grenzwerte liegt. Überprüfen Sie deshalb auch die zulässige Last für die gewählten Betriebsbedingungen.

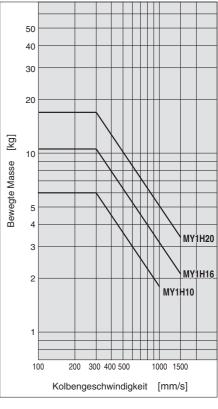

Maximale bewegte Masse

Wählen Sie eine Last, die innerhalb des in den Grafiken gezeigten Betriebsbereichs liegt. Beachten Sie, dass der Wert für das maximal zulässige Moment, selbst bei einem Betrieb innerhalb der in den Grafiken gezeigten Grenzwerte, manchmal überschritten werden kann. Überprüfen Sie deshalb auch das zulässige Moment für die gewählten Betriebsbedingungen.




MY1H/M₂

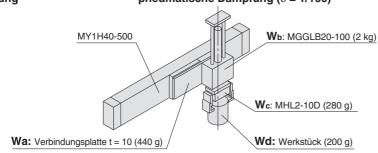

MY1H/M₃

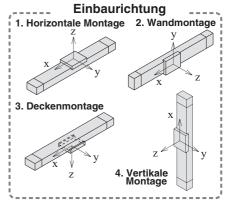

MY1H/m1

MY1H/m₂

MY1H/m3

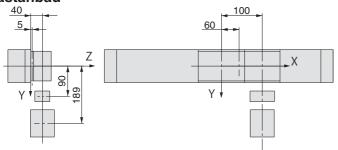
Serie MY1H Modellauswahl


Wählen Sie das für Ihre Anwendung am besten geeignete Modell der Serie MY1C gemäß der folgenden Vorgehensweise.


Berechnung des Belastungsgrads der Führung

1 Betriebsbedingungen -

Zylinder MY1H20-500 Mittlere Betriebsgeschwindigkeit va ... 300 mm/s Einbaurichtung Wandmontage


Dämpfungpneumatische Dämpfung ($\delta = 1/100$)

Siehe obige Seiten für Berechnungsbeispiele zu ieder Einbaurichtung.

2 Lastanbau

Masse und Schwerpunkt jedes Werkstücks

Werk-	Mana		Schwerpunkt	
stück-Nr. Wn	Masse mn	X-Achse Xn	Y-Achse Yn	Z-Achse Zn
Wa	Va 0,44 kg 6		0 mm	5 mm
Wb	2,0 kg	100 mm 0 mr		40 mm
Wc	Wc 0,280 kg 100		90 mm	40 mm
Wd	0,2 kg	100 mm	189 mm	40 mm

n=a, b, c, d

3 Berechnung des Gesamtschwerpunkts

$$\mathbf{m}_3 = \Sigma \mathbf{m}_n$$

= 0,44 + 2,0 + 0,280 + 0,2 = **2,92 kg**

$$X = \frac{1}{m_3} \times \Sigma (m_n \times x_n)$$

$$= \frac{1}{2,95} (0,44 \times 60 + 2,0 \times 100 + 0,280 \times 100 + 0,2 \times 100) = 94,0 \text{ mm}$$

Y =
$$\frac{1}{m_3}$$
 x Σ (m_n x y_n)
= $\frac{1}{2.95}$ (0.44 x 0 + 2.0 x 0 + 0.280 x 90 + 0.2 x 189) = **21.6** mm
Z = $\frac{1}{2.95}$ x Σ (m_n x z_n)

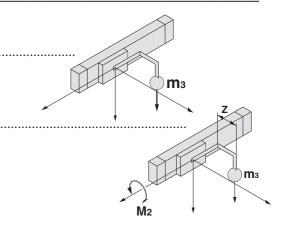
$$Z = \frac{1}{m_3} \times \Sigma (m_n \times z_n)$$

$$= \frac{1}{2,95} (0,44 \times 5 + 2,0 \times 40 + 0,280 \times 40 + 0,2 \times 40) = 34,8 \text{ mm}$$

4 Berechnung des Belastungsgrads für statische Last -

m₃: Masse

m₃ max (aus 1 der Grafik MY1H/m₃) = 17,6 kg······

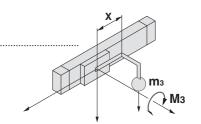

Belastungsgrad $Oldsymbol{C}_1 = m_3/m_3 max = 2,92/17,6 = 0,17$

M₂: Moment

m₂ max (aus 2 der Grafik MY1H/M₂) = 16,0 Nm.....

 $M_2 = m_3 \times g \times Z = 2,92 \times 9,8 \times 34,8 \times 10^{-3} = 1,00 \text{ Nm}$

Belastungsgrad $OL_2 = M_2/M_2 max = 1,00/16,0 = 0,07$



M₃: Moment

M₃ max (aus 3 der Grafik MY1H/M₃) = 11,0 Nm.....

 $M_3 = m_3 \times g \times X = 2,92 \times 9,8 \times 94,0 \times 10^{-3} = 2,69 \text{ Nm}$

Belastungsgrad $Ck_3 = M_3/M_3 max = 2,69/11,0 = 0,25$

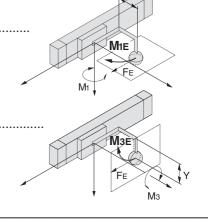
5. Berechnung des Belastungsgrads für dynamisches Moment

Equivalent load FE at impact

$$\mathbf{F}_{\text{E}} = 1.4 \text{ } 0 \text{ a x } \delta \text{ x m x g} = 1.4 \text{ x } 300 \text{ x } \frac{1}{100} \text{ x } 2.92 \text{ x } 9.8 = 120.2 \text{ N}$$

M_{1E}: Moment

$$\mathbf{M}_{1E} = \frac{1}{3} \times \mathbf{F}_{E} \times \mathbf{Z} = \frac{1}{3} \times 120,2 \times 34,8 \times 10^{-3} = 1,40 \text{ Nm}$$


Belastungsgrad $OL4 = M_1E/M_1E max = 1,40/7,9 = 0,18$

MзE: Moment

 M_{3E} max (aus 5 der Grafik MY1H/ M_{3} in der 1,4 V_{0} a = 420 mm/s) = 7,9 Nm·······

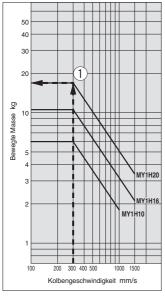
$$\mathbf{M}_{3E} = \frac{1}{3} \times \mathbf{F}_{E} \times \mathbf{Y} = \frac{1}{3} \times 120,2 \times 21,6 \times 10^{-3} = 0,87 \text{ Nm}$$

Belastungsgrad $CL_5 = M_3E/M_3E max = 0.87/7.9 = 0.12$

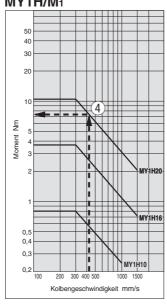
6 Summieren und Überprüfen der Belastungsgrade der Führung

$$\sum \alpha = 0.1 + 0.2 + 0.3 + 0.4 + 0.5 = 0.79 \le 1$$

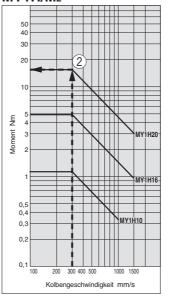
Die obige Berechnung ergibt einen zulässigen Wert; das ausgewählte Modell ist verwendbar.

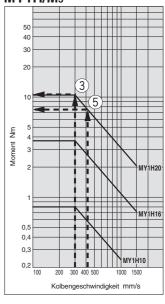

Wählen Sie einen separaten Stoßdämpfer.

Ergibt die Summe der Belastungsgrade der Führung α in der obigen Formel einen Wert größer 1, ziehen Sie eine geringere Geschwindigkeit, einen größeren Kolben-Ø oder eine andere Produktserie in Betracht.


Bewegte Masse

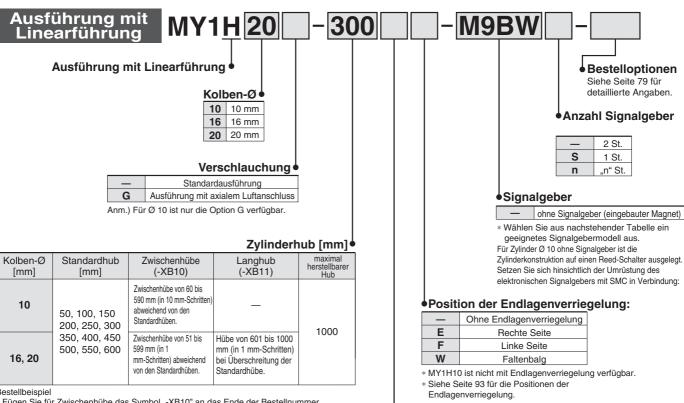
Zulässiges Moment


MY1H/m₃


MY1H/M₁

MY1H/M₂

MY1H/M₃


Kolbenstangenloser Bandzylinder Ausführung mit Linearführung

Serie MY1H

Ø 10, Ø 16, Ø 20

Bestellschlüssel

Für Kolben-Ø 25, 32 und 40 siehe Katalog auf www.smc.eu

Bestellbeispiel

- * Fügen Sie für Zwischenhübe das Symbol "-XB10" an das Ende der Bestellnummer.
- * Fügen Sie für Langhübe das Symbol "-XB11" an das Ende der Bestellnummer.

Symbol Hubbegrenzungseinheit

Siehe "Hubbegrenzungseinheit" auf Seite 71.

Für die Endlagenverriegelungsseite ist kein Zwischenstück erhältlich.

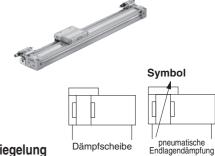
Verwendbare Signalgeber/Siehe Seiten 107 bis 117 für nähere Informationen zu Signalgebern.

Aus-			zeige	Elektrischer	La	estspannu	ing	Signalgel	permodell	Anscl	hlussl	kabel	llänge	e [m]	vorver-													
führung	Sonderfunktion	Elektrischer Eingang	Betriebsanzeige	Anschluss (Ausgang)	D	С	AC	senkrecht	gerade	0,5 (—)	1 (M)	3 (L)	5 (Z)	ohne (N)	drahteter Stecker	zulässi	ge Last											
				3-Draht (NPN)		5 V. 12 V		M9NV	M9N				0	0	0	IC-Steuerung												
				3-Draht (PNP)		5 V, 12 V		M9PV	M9P				0	0	0	10-Steuerung												
er er				zweidraht	zweidraht	12 V		M9BV	M9B	•	•	•	0	0	0	_												
scl	D: .]		3-Draht (NPN)	E V 10 V	5 V, 12 V	5 V 10	5 V 40 V	E V 10 V		M9NWV	M9NW				0	0	0	IC-Steuerung	D-I-:-								
oni	Diagnoseanzeige Ein-	(2-farbig) Ein-	ja	3-Draht (PNP)	24 V	5 V, 12 V	_	M9PWV	M9PW	•	•	•	0	0	0	10-Sieuerung	Relais, SPS-											
g kr	(2-iaibig)	gegossene Kabel		zweidraht		12 V	12 V		M9BWV	M9BW				0	0	0	_	01 0-										
elektronischer Signalgeber		Rabei		3-Draht (NPN)		5 V 40 V	5 V 40 V		M9NAV*1	M9NA*1	0	0		0	_	0	IC-Steuerung											
	wasserfest (2-farbig)			3-Draht (PNP)	5 V, 12 V	5 V, 12	5 V, 12	5 V, 12 V	5 V, 12 V	5 V, 12	5 V, 12 V	5 V, 12 V	5 V, 12 V	5 V, 12 V		M9PAV*1	M9PA*1	0	0	•	0	_	0	10-Steuerung				
	(Z-iaibig)			zweidraht		12 V		M9BAV*1	M9BA*1	0	0	•	0	_	0	_												
ed-	gegoss	Ein-	ja	3-Draht (entspricht NPN)	_	5 V	_	A96V	A96	•	_	•	_	_	_	IC-Steuerung	_											
Be Si		gegossene Kabel		zweidraht	24 V	12 V	100 V	A93V*2	A93	•		•		_	_	_	Relais,											
S		Rabei	nein	zweidrani	24 V	12 V	max. 100 V	A90V	A90	•	_	•	_	_	_	IC-Steuerung	SPS-											

- *1 Wasserfeste Signalgeber können auf den o. g. Modellen montiert werden, in diesem Fall kann SMC jedoch die Wasserfestigkeit nicht garantieren. Setzen Sie sich bei Verwendung wasserfester Modelle mit den o.g. Bestellnummer mit SMC in Verbindung.
- *2 Das Anschlusskabel mit 1 m ist nur mit der Ausführung D-A93 verwendbar.
- * Symbole für Anschlusskabellänge: 0.5 m Beispiel: M9NW * Elektronische Signalgeber mit der Markierung "O" werden auf Bestellung gefertigt. 1 m M Beispiel: M9NWM 3 m L 5 m Z Beispiel: M9NWL
- Beispiel: M9NWZ * Neben den o.g. Signalgebern können verschiedene andere verwendet werden. Weitere Einzelheiten finden Sie auf Seite 117.
- * Signalgeber werden mitgeliefert (nicht montiert). (Siehe Seiten 115 bis 117 für nähere Angaben zur Signalgebermontage.)

Kolbenstangenloser Bandzylinder Ausführung mit Linearführung

Serie MY1H


Technische Daten

Kolben-Ø [mm]		10 16 20					
Medium		Druc	kluft				
Wirkungs	sweise	doppelt	wirkend				
Betriebsd	Betriebsdruckbereich 0,2 bis 0,8 MPa 0,15 bis 0,8						
Prüfdrucl	k	1,2	MPa				
Umgebungs-	und Medientemperatur	5 bis 60 °C					
Dämpfun	g	Dämpfscheibe	pneumatische En	dlagendämpfung			
Schmieru	ıng	lebensdaue	rgeschmier	t			
Hubtolera	anz	+1 0	,8				
Luft- anschluss-	Anschluss vorn/seitlich	M5 x 0,8					
größe	Ausgang unten		4				

Bestelloptionen: Technische Daten (Nähere Angaben finden Sie auf den Seiten 118 bis 120.)

Symbol	Technische Daten
-X168	Einschraubgewinde
-XB10	Zwischenhubausführung
-XB11	Langhub-Ausführung
-XB22	Stoßdämpfer sanft dämpfende Ausführung Serie RJ
-XC67	NBR-Beschichtung im Staubschutzband
-XC56	Bohrungen für Bolzen
20-	Kupferfrei

Technische Daten Verriegelung

	<u> </u>					
Kolben-Ø [mm]	16	20				
Verriegelungsposition	eine Seite (wählbar), beide Seiter					
Haltekraft (max.) [N]	110	170				
Hub-Feineinstellbereich [mm]	0 bis -5,6	0 bis -6				
Spiel	max. 1 mm					
Manuelle Entriegelung	möglich (nicht verriegelbare Ausführung					

Kolbengeschwindigkeit

Kolben-Ø [mm]		10	16, 20
ohne Hubbegrenzungseinheit		100 bis 500 mm/s	100 bis 1000 mm/s
Hubbegrenzungs-	Gewicht	100 bis 200 mm/s	100 bis 1000 mm/s ⁽¹⁾
einheit	Einheit L und Einheit H	100 bis 1000 mm/s	100 bis 1.500 mm/s (2)

Anm. 1) Beachten Sie, dass die Dämpfungskapazität abnimmt, wenn der Hubeinstellbereich durch Einstellen des Anschlagbolzens vergrößert wird. Wird der auf Seite 81 angegebene Dämpfungshubbereich überschritten, sollte die Kolbengeschwindigkeit 100 bis 200 mm pro Sekunde betragen.

- Anm. 2) Bei der Ausführung mit zentralem Luftanschluss beträgt die Kolbengeschwindigkeit 100 bis 1000 mm/s.
- Anm. 3) Betreiben Sie den Zylinder mit einer Geschwindigkeit innerhalb des Bereichs der Dämpfungskapazität. Siehe Seite 81.

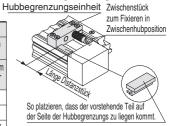
Technische Daten Hubbegrenzungseinheit

		<u> </u>						
Kolben-	·Ø [mm]	10	1	6	20			
Einheitssyml	ool	Н	Α	L	A L		Н	
Konfiguration Stoßdämpfer		RB 0805 Mit Einstellbolzen	Mit Einstellbolzen	RB 0806 Mit Einstellbolzen	Mit Einstellbolzen	RB 0806 Mit Einstellbolzen	RB 1007 Mit Einstellbolzen	
Hubeinstellbereich	ohne Distanzstück	0 bis -10	0 bis	-5,6	0 bis -6			
mit Zwischenstück	mit kurzem Zwischenstück	*1	−5,6 bi	s –11,2	-6 bis −12			
[mm]	mit langem Zwischenstück	*1	-11,2 bis -16,8			-12 bis -18		

- *1) Hubbegrenzung für Ø 10 erhältlich. Siehe Seite 83 für detaillierte Angaben.
- *2) Der Hubeinstellbereich gilt für eine Seite bei Montage auf einem Zylinder.

Symbol Hubbearenzungseinheit

hwere Lasten olzen mit langem Zwischen- stück
mit langem Zwischen-
Zwischen-
SH7
AH7
A6H7
A7H7
LH7
L6H7
L7H7
HH7
Н6Н7
H7
5


- * Für die Endlagenverriegelungsseite ist kein Zwischenstück erhältlich.
- * Die Zwischenstücke fixieren die Hubbegrenzungseinheit in Zwischenhubposition.

Stoßdämpfer für die Einheiten L und H

Augführung	Hubbegrenzung-	Kolben-Ø [mm]					
Ausführung	seinheit	10	16	20			
Standard	L	_	RBO	806			
(Stoßdämpfer/RB Serie)	H RB0805 —		_	RB1007			
Stoßdämpfer/sanft dämpfende Ausführung	L	_	RJ0806H				
Serie RJ montiert (-XB22)	Н	RJ0805	_	RJ1007H			

^{*} Die Lebensdauer des Stoßdämpfers entspricht je nach Betriebsbedingungen nicht der Lebensdauer der MY1H-Zylinder. Entnehmen Sie die Austauschintervalle den Produktspezifischen Sicherheitshinweisen der Serie RB.

Montagezeichnung Hubbegrenzungseinheit

Anbaubeispiel L6L7

Technische Daten Stoßdämpfer

Mod	dell	RB 0805	RB 0806	RB 1007
max. Energi	eaufnahme [J]	1,0	2,9	5,9
Hubdämpfui	ng [mm]	5	6	7
max. Aufpraliges	schwindigkeit [mm/s]	1000	1500	1500
max. Schaltfrequ	uenz [Zyklus/min]	80	80	70
Federkraft	ausgefahren	1,96	1,96	4,22
[N]	eingefahren	3,83	4,22	6,86
Betriebstempe	raturbereich [°C]		5 bis 60	

^{*} Stoßdämpfer/sanft dämpfende Serie RJ montiert (-XB22) als Bestelloption erhältlich.

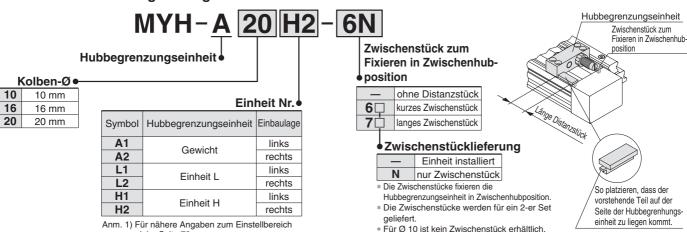
Serie MY1H

Theoretische Leistung

								[N]
Kolben-Ø	Kolben- fläche			Betrie	bsdruck	[MPa]		
[mm]	[mm ²]	0,2	0,3	0,4	0,5	0,6	0,7	0,8
10	78	15	23	31	39	46	54	62
16	200	40	60	80	100	120	140	160
20	314	62	94	125	157	188	219	251

Anm.) Theoretische Zylinderkraft [N] = Druck [MPa] x Kolbenfläche [mm²]

Gewicht

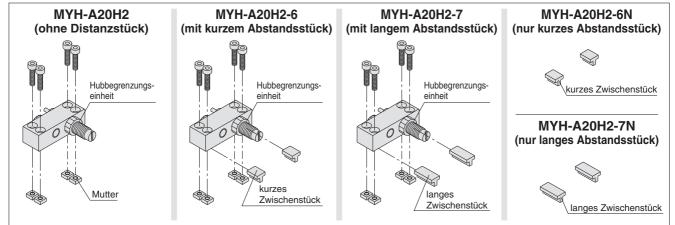

							[kg]
Kolben-Ø	Basisge-	zusätzliches Gewicht je	Gewicht der Stützelements (pro Set)	icht der Stützelements (pro Set) (ie Finhe		Hubbegrenz (je Einheit)	rungseinheit
[mm]	wicht	50 mm Hub	Teile	Ausführung A und B	Gewicht der Einheit A	Gewicht Einheit L	Gewicht Einheit H
10	0,26	0,08	0,05	0,003	_		0,02
16	0,74	0,14	0,19	0,01	0,02	0,04	
20	1,35	0,25	0,40	0,02	0,03	0,05	0,07

Berechnung: (Beispiel) MY1H20-300A

- Basisgewicht1,35 kg
- ZylinderhubHub 300
- zusätzliches Gewicht ..0,25 kg/Hub 50 + 2 x Einheit A $0.25 \text{ kg} \times 300/50 + 2 \times 0.03 \text{ kg} = 1.56 \text{ kg}$
- Gewicht2,91 kg

Option

Bestellnummer Hubbegrenzungseinheit



siehe Seite 79.

Anm. 2) Einheit H nur für Ø 10, Einheiten A und L nur für Ø 16

* Bei Bestellung des Zwischenstücks für die Hubbegrenzungseinheit wird das Zwischenstück dazu geliefert.

Stückliste

^{*} Das Zylindergehäuse ist mit Muttern ausgestattet.

Bestellnummer Stützelement

Kolben-Ø [mm] Ausführung		16	20
Stützelement A	MY-S10A	MY-S16A	MY-S20A
Stützelement B	MY-S10B	MY-S16B	MY-S20B

Für weitere Informationen zu Abmessungen usw. siehe Seite 94.

Ein Stützelement-Set enthält jeweils ein Element für die linke und für die rechte Seite.

Dämpfungskapazität

Auswahl der Dämpfung

Elastische Dämpfscheibe

Die Serie MY1H10 ist standardmäßig mit elastische Dämpfung ausgestattet.

Da der Dämpfungshub der elastischen Dämpfung kurz ist, sollte ein externer Stoßdämpfer installiert werden, wenn der Hub mit einer A-Einheit eingestellt wird.

Der von der elastische Dämpfung absorbierbare Last- und Geschwindigkeitsbereich wird durch die Grenzwertlinien in der Grafik dargestellt.

Pneumatische Dämpfung

Die kolbenstangenlosen Bandzylinder sind standardmäßig mit pneumatischer Dämpfung ausgestattet.

Der pneumatische Dämpfungsmechanismus verhindert zu hohe Aufprallkräfte des Kolbens am Hubende während des Betriebs mit hohen Geschwindigkeiten. Die pneumatische Dämpfung bremst allerdings nicht den Kolben am Hubende.

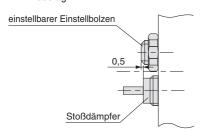
Die Last- und Geschwindigkeitsbereiche, die die pneumatische Dämpfung absorbieren kann, sind in den Diagrammen dargestellt.

Hubbegrenzungseinheit mit Stoßdämpfer

Verwenden Sie diese Einheit, beim Betrieb mit Lasten oder Geschwindigkeiten, die die Grenzwerte der pneumatischen Dämpfung überschreiten bzw. wenn eine Dämpfung erforderlich ist, die aufgrund der Hubbegrenzung außerhalb des effektiven pneumatischen Dämpfungshubbereichs liegt.

Einheit L

Verwenden Sie diese Einheit, wenn der Zylinderhub außerhalb des effektiven Dämpfungsbereichs der pneumatischen Dämpfung liegt, selbst wenn die Last und die Geschwindigkeit innerhalb der Grenzwerte der pneumatischen Dämpfung liegen oder wenn der Zylinder in einem Last- und Geschwindigkeitsbereich betrieben wird, der über den Grenzwerten der pneumatischen Dämpfung und unterhalb der der L-Einheit liegt

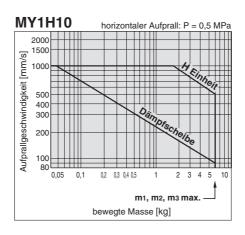

Einheit H

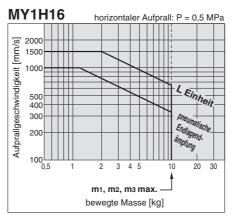
Verwenden Sie diese Einheit, wenn der Zylinder in einem Last- und Geschwindigkeitsbereich betrieben wird, der unterhalb der Grenz-Kennlinie der Einheit H liegt

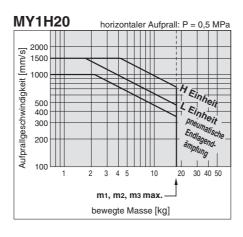
Achtung

 Beachten Sie die unten stehende Abbildung, wenn der Einstellbolzen zur Hubbegrenzung verwendet wird.

Die Absorbationskapazität nimmt drastisch ab, wenn der effektive Hub des Stoßdämpfers aufgrund der Hubeinstellung verkürzt wird. Ziehen Sie den Einstellbolzen in der Position fest, in der er ca. 0,5 mm über den Stoßdämpfer hinausragt.




Der Stoßdämpfer darf nicht zusammen mit der pneumatischen Dämpfung eingesetzt werden.


Pneumatischer Dämpfungshub [mm]

	1 0 1
Kolben-Ø [mm]	Dämpfungshub
16	12
20	15

Dämpfungskapazität der elastischen Dämpfung, der pneumatischen Dämpfung und der Hubbegrenzungseinheiten

Serie MY1H

Dämpfungskapazität

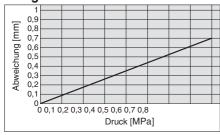
Anzugsdrehmoment der Haltebolzen der Hubbegrenzungseinheit

Kolben-Ø [mm]	Anzugsmoment
10	Siehe Einstellverfahren auf Seite 83.
16	0,7
20	1,8

Berechnung der Energieaufnahme bei Hubbegrenzungseinheit

mit Stol	dämpfer		[N·m]
	horizontaler Aufprall	vertikal (abwärts)	vertikal (aufwärts)
Aufprallart	<u>m</u> <u>s</u>	V m	s + w
Kinetische Energie		$\frac{1}{2}\;m{\cdot}\mathcal{V}^{_2}$	
Schubkraft E 2	F⋅s	F·s + m·g·s	F·s – m·g·s
Energieaufnahme		E1 + E2	

Symbol

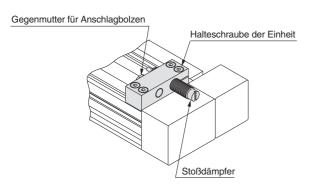

υ: Geschwindigkeit des aufprallenden Objekts [m/s]

F: Zylinderschub [N] s: Stoßdämpferhub [m] m: Gewicht des aufprallenden Objekts [kg]

g: Erdbeschleunigung (9,8 m/s²)

Anm.) Die Geschwindigkeit des aufprallenden Objekts wird zum Zeitpunkt des Aufpralls am Stoßdämpfer gemessen.

elastische Dämpfung (nur Ø 10) Positiver Hub von einer Seite infolge des Drucks


Serie MY1H Produktspezifische Sicherheitshinweise 1

Vor der Inbetriebnahme durchlesen.

Achtung

Seien Sie vorsichtig, dass Ihre Hände nicht in der Einheit eingeklemmt werden.

 Bei Verwendung eines Produkts mit Hubeinstelleinheit verringert sich der Raum zwischen dem Schlitten und der Hubeinstelleinheit am Hubende, so dass die Hände eingeklemmt werden könnten. Bringen Sie deshalb eine Schutzabdeckung an, um einen direkten Kontakt auszuschließen.

<Befestigung der Einheit>

Die Einheit kann durch gleichmäßiges Anziehen der vier Halteschrauben fixiert werden.

Achtung

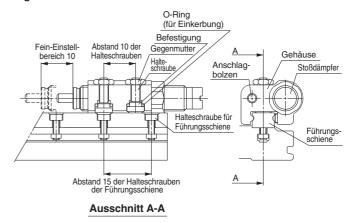
Befestigen Sie die Hubeinstelleinheit nicht in einer Zwischenposition.

Wenn die Hubeinstelleinheit in einer Zwischenposition befestigt wird, können, abhängig von der beim Aufprall frei werdenden Energie, Slip-Effekte auftreten. In diesem Fall empfehlen wir die Verwendung der Befestigungselemente für den Anschlagbolzen, die als Bestelloptionen -X 416 und -X 417 erhältlich sind. (Außer Ø 10.)

Wenden Sie sich für andere Längen an SMC. (Siehe Anzugsmoment der Halteschraube der Hubeinstelleinheit".)

< Hubeinstellung mit Anschlagbolzen>

Lösen Sie die Gegenmutter des Anschlagbolzens und stellen Sie dann den Hub von der Seite des Zylinderdeckels aus mit einem Schraubenschlüssel ein. Ziehen sie die Gegenmutter wieder fest.


< Hubeinstellung mit Stoßdämpfer>

Lösen Sie die zwei Halteschrauben der Einheit an der Stoßdämpferseite und stellen Sie den Hub durch Drehen des Stoßdämpfers ein. Ziehen Sie anschließend die Halteschrauben der Einheit gleichmäßig fest, um den Stoßdämpfer zu fixieren

Achten Sie darauf, die Halteschrauben nicht übermäßig festzuziehen. (Außer \varnothing 16 und \varnothing 20) (Siehe Anzugsmoment der Halteschraube der Hubeinstelleinheit".)

Achtung

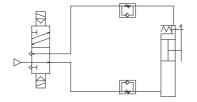
Führen Sie zur Einstellung der Hubeinstelleinheit des MY1H10 die folgenden Schritte durch.

Einstellung

- Lösen Sie die zwei Gegenmuttern und anschließend die Halteschrauben durch Drehen um ca. zwei Umdrehungen.
- Bewegen Sie das Gehäuse bis zu der Einkerbung genau vor dem gewünschten Hub. (Die Einkerbungen befinden sich in abwechselnden Schritten von 5 mm und 10 mm.)
- Ziehen Sie die Halteschraube mit 0,3 Nm fest. Achten Sie darauf, dieses Anzugsmoment nicht zu überschreiten.
 - Die Befestigung passt in die Montagebohrung an der Führungsschiene, um ein Verrutschen zu vermeiden und erlaubt eine Montage mit geringem Anzugsmoment.
- 4. Ziehen Sie die Gegenmutter mit 0,6 Nm fest.
- Führen Sie die Feineinstellung mit dem Anschlagbolzen und dem Stoßdämpfer durch.

Serie MY1H

Produktspezifische Sicherheitshinweise 2


Vor der Inbetriebnahme durchlesen.

Mit Endlagenverriegelung

Empfohlener Pneumatikschaltkreis

⚠ Achtung

Erforderlich für sicheres Verriegeln und Entriegeln.

Sicherheitshinweise zum Betrieb

∕Achtung

1. Verwenden Sie keine 3/2-Wege-Elektromagnetventile.

Vermeiden Sie den Einsatz in Verbindung mit 3/2-Wege-Elektromagnetventilen (insbesondere die Ausführungen mit Metallschieber). Wenn Druckluft im Anschluss an der Seite des Verriegelungsmechanismus eingeschlossen wird, kann der Zylinder nicht verriegelt werden.

Selbst nach ausgeführter Verriegelung kann diese nach einiger Zeit aufgrund von Druckluftverlusten am Elektromagnetventil gelöst werden .

2. Zum Lösen der Verriegelung ist Rückdruck erforderlich.

Vergewissern Sie sich vor dem Betriebsstart, dass, wie oben dargestellt, das System so gesteuert wird, dass die Druckluft an der Seite ohne Verriegelungsmechanismus zugeführt wird (im Fall der beidseitigen Verriegelung, die Seite, an der der Schlitten nicht verriegelt wird). Es besteht die Möglichkeit, dass die Verriegelung nicht gelöst wird. (Siehe den Abschnitt zum Lösen der Verriegelung.)

3. Lösen Sie zur Montage oder Einstellung des Zylinders die Verriegelung.

Werden Montage- oder andere Arbeiten im verriegelten Zustand des Zylinders durchgeführt, kann die Verriegelungseinheit beschädigt werden.

4. Betreiben Sie den Zylinder mit max. 50 % der theoretischen Zylinderkraft.

Beträgt die Last mehr als 50 % der theoretischen Zylinderkraft, kann dies zu Problemen wie beispielsweise Fehlfunktionen beim Lösen der Verriegelung oder zu Schäden an der Verriegelungseinheit führen .

5. Betreiben Sie nicht mehrere Zylinder gleichzeitig.

Vermeiden Sie Anwendungen, in denen zwei oder mehr Verriegelungszylinder synchronisiert werden, um ein Werkstück zu bewegen, da eine der Zylinderverriegelungen möglicherweise nicht bei Bedarf gelöst werden kann.

6. Verwenden Sie ein abluftgesteuertes Drosselrückschlagventil.

Die Verriegelung kann möglicherweise mit einer Zuluftdrossel nicht gelöst werden.

7. Vergewissern Sie sich, dass der Kolben das Hubende an der Verriegelungsseite erreicht.

Der Zylinder kann weder ver- noch entriegelt werden, wenn der Kolben das Hubende nicht erreicht. (Siehe den Abschnitt zur Einstellung des Verriegelungsmechanismus.)

Betriebsdruck

Achtung

1. Der Anschluss auf der Verriegelungsseite muss mit mindestens 0,15 MPa versorgt werden, um die Verriegelung zu lösen.

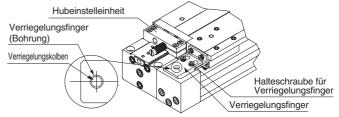
Entlüftungsgeschwindigkeit

△Achtung

1. Fällt der Druck am Anschluss auf der Seite des Verriegelungsmechanismus auf 0,05 MPa oder darunter, wird automatisch verriegelt. Beachten Sie, dass im Fall einer langen und dünnen Druckluftleitung an der Verriegelungsseite oder falls das Drosselrückschlagventil in einigem Abstand vom Zylinderanschluss installiert ist, die Entlüftungsgeschwindigkeit abnimmt und das Einrasten der Verriegelung etwas länger dauert.

Der gleiche Effekt kann auftreten, wenn ein am Entlüftungsanschluss des Elektromagnetventils montierter Schalldämpfer verstopft ist.

Einfluss der Dämpfung


Achtung

 Wenn sich die pneumatische Dämpfung im fast oder ganz geschlossenen Zustand befindet, besteht die Möglichkeit, dass der Schlitten das Hubende nicht erreicht und daher nicht verriegelt wird.

Einstellung der Endlagenverriegelung

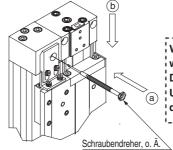
Achtung

- Der Mechanismus der Endlagenverriegelung ist bei Auslieferung bereits eingestellt. Eine weitere Einstellung für die Verriegelung am Hubende ist daher nicht erforderlich.
- 2. Stellen Sie den Mechanismus der Endlagenverriegelung nach Justieren der Hubeinstelleinheit ein. Zuerst müssen der Anschlagbolzen und der Stoßdämpfer der Hubeinstelleinheit justiert und fixiert werden. Andernfalls kann möglicherweise weder ver- noch entriegelt werden.
- 3. Führen Sie die Feineinstellung der Endlagenverriegelung folgen-dermaßen durch. Lösen Sie die Halteschrauben des Verriegelungsfingers und justieren Sie dann, indem Sie die Mitte des Verriegelungskolbens auf die Mitte der Fingerbohrung ausrichten. Fixieren Sie den Verriegelungsfinger.

Lösen der Verriegelung

∆Warnung

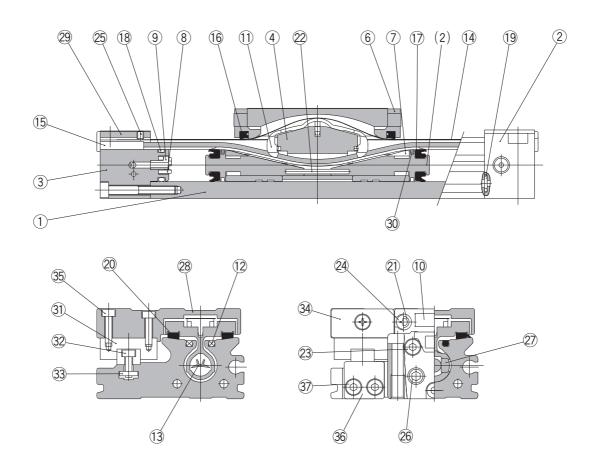
1. Achten Sie darauf, vor dem Lösen der Verriegelung Druckluft an der Seite ohne Verriegelungsmechanismus zuzuführen, damit keine Last auf diesen wirkt, wenn er gelöst wird. (Siehe empfohlener Pneumatik-Schaltkreis.) Wird die Verriegelung unter Belastung und bei Entlüftung des Anschlusses auf der Seite ohne die Verriegelung gelöst, wirkt eine übermäßige Kraft auf die Verriegelungseinheit, so dass diese möglicherweise beschädigt wird. Darüberhinaus sind plötzliche Schlittenbewegungen überaus gefährlich.


Manuelle Entriegelung

. Achtung

1. Bei manueller Entriegelung muss der Druck abgelassen werden.

Wird die Endlagenverriegelung unter Druck gelöst, können unerwartete Kolbenbewegungen das Werkstück usw. beschädigen.


 Führen Sie die manuelle Entriegelung der Endlagenverriegelung wie folgt durch. Drücken Sie den Verriegelungskolben mit einem Schraubendreher o.Ä. nach unten und bewegen Sie den Schlitten.

Weitere Sicherheitshinweise bzgl. Montage, Druckluftanschluss und Umgebung entsprechen denen der Standardserie.

Konstruktion: Ø 10

Ausführung mit axialem Luftanschluss

Stückliste

Nr.	Bezeichnung	Material	Anm.
1	Zylinderrohr	Aluminiumlegierung	harteloxiert
2	Zylinderdeckel WR	Aluminiumlegierung	lackiert
3	Zylinderdeckel WL	Aluminiumlegierung	lackiert
4	Mitnehmer	Aluminiumlegierung	harteloxiert
5	Kolben	Aluminiumlegierung	chromatiert
6	Endabdeckung	Spezialkunststoff (PBT)	
7	Kolbenführungsband	Spezialkunststoff (PBT)	
8	Dämpfscheibe	Polyurethankautschuk	
9	Haltevorrichtung	rostfreier Stahl	
10	Stopper	Kohlenstoffstahl	vernickelt
11	Riementrenner	Spezialkunststoff (PBT)	
12	Dichtung Magnet	Gummi Magnet	
15	Riemenklemmung	Spezialkunststoff (PBT)	
20	Lager	Spezialkunststoff (PBT)	
21	Distanzstück	Chrommolybdänstahl	vernickelt

Ersatzteile: Dichtsatz

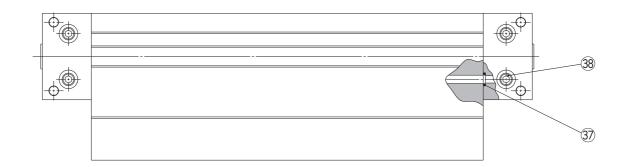
Nr.	Bezeichnung	Menge	MY1H10			
13	Dichtungsband	1	MY10-16A-Hub			
14	Staubschutzband	1	MY10-16B-Hub			
16	Abstreifer	2				
17	Kolbendichtung	2	MY1B10-PS			
18	Zylinderrohrdichtung	2	WITIBIO-F3			
19	O-Ring	4				

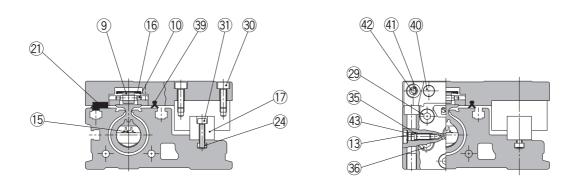
^{*} Die Dichtsätze bestehen jeweils aus den Artikeln (6, ①, (8) und (9). Die Dichtsätze enthalten einen Beutel mit Fett (10 g).

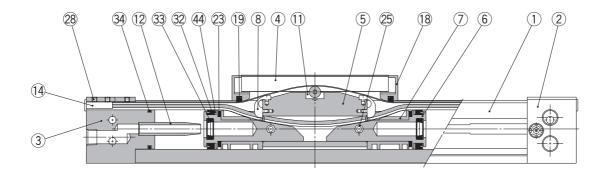
Wenn, (3) und (4) getrennt geliefert werden, ist ein Beutel mit Fett (20 g) enthalten.

Mit folgender Bestellnummer können Sie Fett separat bestellen:

GR-S-010 (10 g), GR-S-020 (20 g)


Nr.	Bezeichnung	Material	Anm.
22	Federstift	rostfreier Stahl	
23	Innensechskantschraube	Chrommolybdänstahl	vernickelt
24	Rundkopf-Kreuzschlitzschraube	Kohlenstoffstahl	vernickelt
25	Innensechskantschraube	Kohlenstoffstahl	schwarz verzinkt und chromatiert
26	Innensechskantstopfen	Kohlenstoffstahl	vernickelt
27	Magnet	1	
28	Schlitten	Aluminiumlegierung	harteloxiert
29	Kopfplatte	rostfreier Stahl	
30	Filz	Filz	
31	Linearführung	-	
32	Innensechskantschraube	Chrommolybdänstahl	vernickelt
33	Vierkantmutter	Kohlenstoffstahl	vernickelt
34	Anschlagplatte	Kohlenstoffstahl	vernickelt
35	Innensechskantschraube	Chrommolybdänstahl	vernickelt
36	Führungsanschlag	Kohlenstoffstahl	vernickelt
37	Innensechskantschraube	Chrommolybdänstahl	vernickelt




Serie MY1H

Konstruktion: Ø 16, Ø 20

MY1H16, 20

MY1H16, 20

Stückliste

10.01.01.0					
Bezeichnung	Material	Anm.			
Zylinderrohr	Aluminiumlegierung	harteloxiert			
Zylinderdeckel WR	Aluminiumlegierung	lackiert			
Zylinderdeckel WL	Aluminiumlegierung	lackiert			
Schlitten	Aluminiumlegierung	harteloxiert			
Mitnehmer	Aluminiumlegierung	chromatiert			
Kolben	Aluminiumlegierung	chromatiert			
Kolbenführungsband	Spezialkunststoff (PBT)				
Riementrenner	Spezialkunststoff (PBT)				
Führungsrolle	Spezialkunststoff (PBT)				
Führungsrollenwelle	rostfreier Stahl				
Kupplung	gesintertes Eisenmetall				
Dämpfungshülse	Aluminiumlegierung	eloxiert			
Dämpfungseinstellschraube	Walzstahl	vernickelt			
Riemenklemmung	Spezialkunststoff (PBT)				
Führung	_				
Endabdeckung	Spezialkunststoff (PBT)				
Lager	Spezialkunststoff (PBT)				
	Zylinderrohr Zylinderdeckel WR Zylinderdeckel WL Schlitten Mitnehmer Kolben Kolbenführungsband Riementrenner Führungsrolle Führungsrollenwelle Kupplung Dämpfungshülse Dämpfungseinstellschraube Riemenklemmung Führung Endabdeckung	Zylinderrohr Aluminiumlegierung Zylinderdeckel WR Aluminiumlegierung Zylinderdeckel WL Aluminiumlegierung Schlitten Aluminiumlegierung Mitnehmer Aluminiumlegierung Kolben Aluminiumlegierung Kolbenführungsband Spezialkunststoff (PBT) Riementrenner Spezialkunststoff (PBT) Führungsrolle Spezialkunststoff (PBT) Führungsrollenwelle rostfreier Stahl Kupplung gesintertes Eisenmetall Dämpfungshülse Aluminiumlegierung Dämpfungseinstellschraube Riemenklemmung Spezialkunststoff (PBT) Führung — Endabdeckung Spezialkunststoff (PBT)			

Nr.	Bezeichnung	Material	Anm.
23	Magnet	_	
24	Vierkantmutter	kohlenstoffstahl	vernickelt
25	Federstift	Werkzeugstahl	
28	Innensechskantschraube	chrommolybdänstahl	schwarz verzinkt und chromatiert/vernickelt
29	Innensechskantschraube	chrommolybdänstahl	vernickelt
30	Innensechskantschraube	chrommolybdänstahl	vernickelt
31	Innensechskantschraube	chrommolybdänstahl	vernickelt
36	konischer Innensechskantstopfen	kohlenstoffstahl	vernickelt
38	konischer Innensechskantstopfen	kohlenstoffstahl	vernickelt
40	Anschlag	kohlenstoffstahl	vernickelt
41	Distanzstück	rostfreier Stahl	
42	Innensechskantschraube	chrommolybdänstahl	vernickelt
43	Sicherungsring Ausführung CR	Federstahl	
44	Schmutzabstreifer	spezialkunststoff (PBT)	

Ersatzteile: Dichtsatz

Nr.	Bezeichnung	Menge	MY1H16	MY1H20
15	Dichtungsband	1	MY16-16C-Hub	MY20-16C- Hub
16	Staubschutzband	1	MY16-16B-Hub	MY20-16B- Hub
35	O Dina	0	KA00309	KA00309
35	O-Ring	2	(Ø 4 x Ø 1,8 x Ø 1,1)	(Ø 4 x Ø 1,8 x Ø 1,1)
39	Abstreifer seitlich	1	MYH16-15BK2900B	MYH20-15BK2901B
19	Abstreifer	2		
32	Kolbendichtung	2		
33			MY1H16-PS	MY1H20-PS
34				
37	O-Ring	4		

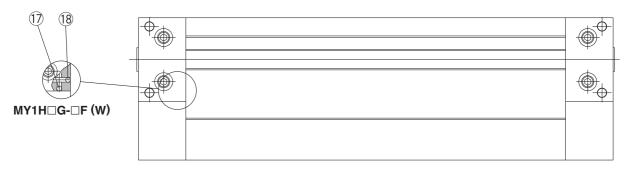
^{*} Die Dichtsätze bestehen jeweils aus den Artikeln (§), (22), (33), (34) und (37). Bestellen Sie den Dichtsatz entsprechend des jeweiligen Kolbendurchmessers.

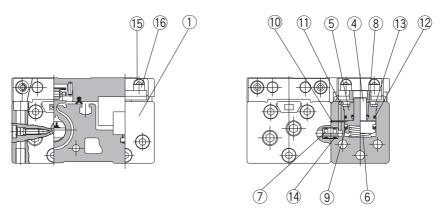
* Die Dichtsätzeenthalten einen Beutel mit Fett (10 g).

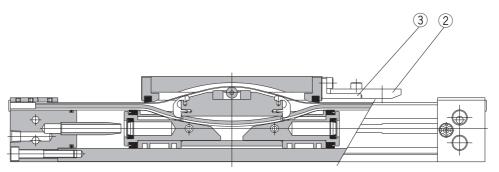
Wenn, (§) und (§) getrennt geliefert werden, ist ein Beutel mit Fett (20 g) enthalten.

Mit folgender Bestellnummer können Sie Fett separat bestellen: GR-S-010 (10 g), GR-S-020 (20 g)

Anm.) Es sind zwei Typen des Staubschutzbands erhältlich. Überprüfen Sie, welcher Typ verwendet werden soll, da die Bestellnummer entsprechend der Oberflächenbehandlung der Innensechskanteinstellschraube unterschiedlich ist. ②.


A: schwarz verzinkt und chromatiert → MY□□-16B-Hub, B: vernickelt → MY□□-16BW-Hub




Serie MY1H

Konstruktion: Ø 16, Ø 20

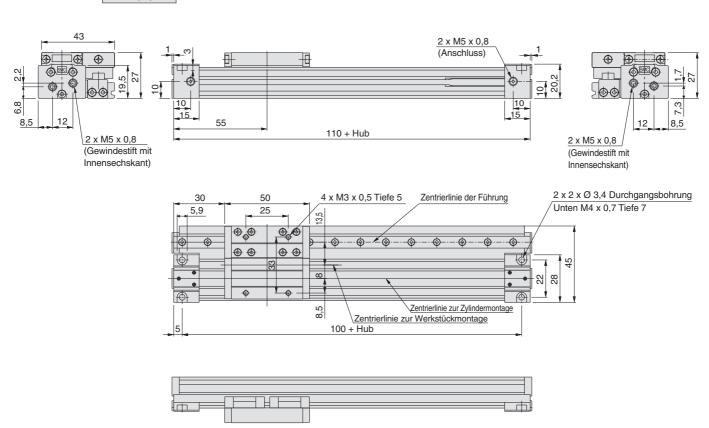
Mit Endlagenverriegelung

Stückliste

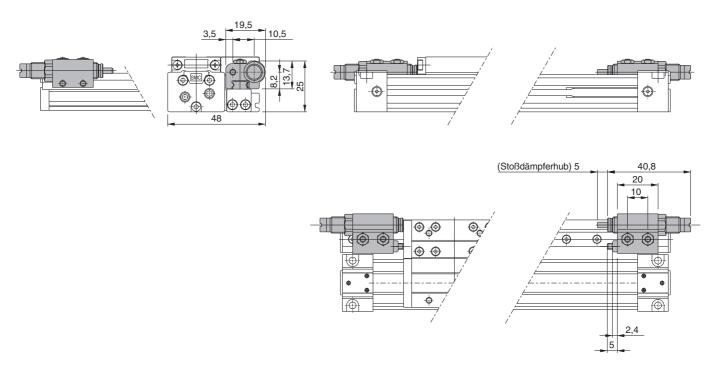
Pos.	Bezeichnung	Material	Anm.
1	Verriegelungsgehäuse	Aluminium	harteloxiert
2	Verriegelungsfinger	Werkzeugstahl	vernickelt
3	Halter für Verriegelungsfinger	Stahl	vernickelt
4	Verriegelungskolben	Werkzeugstahl	chemisch vernickelt
5	Zylinderkopf	Aluminium	harteloxiert
6	Rückstellfeder	Federstahl	verz. und chromatiert
7	Bypassrohr	Aluminium	harteloxiert
10	Stahlkugel	Chromlagerstahl	
11	Stahlkugel	Chromlagerstahl	
13	Sicherungsring Typ R	Werkzeugstahl	vernickelt
14	O-Ring	NBR	
15	Zyl.Schraube mit Innensechskant	Chrommolybdänstahl	vernickelt
16	Zyl.Schraube mit Innensechskant	Chrommolybdänstahl	vernickelt
17	Stahlkugel	Chromlagerstahl	
18	Stahlkugel	Chromlagerstahl	

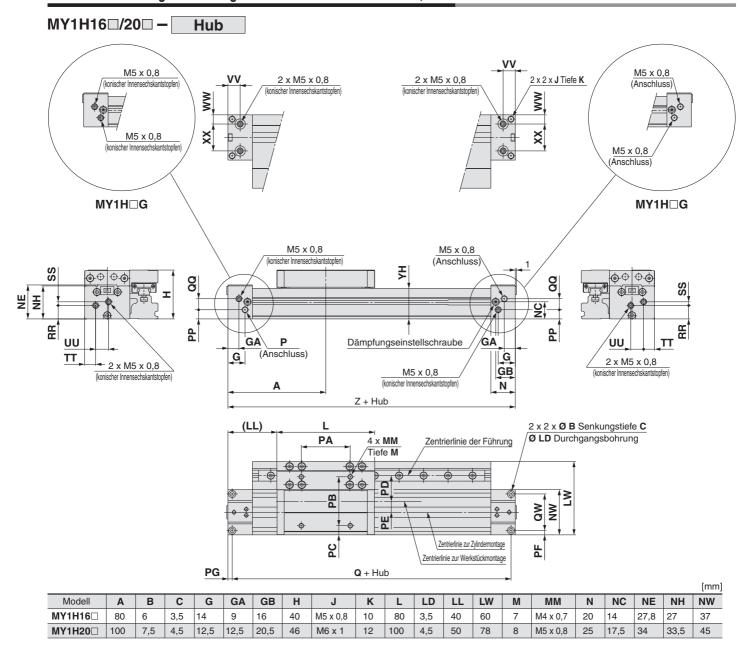
Dichtungen

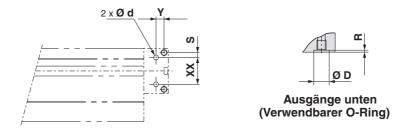
Pos.	Bezeichnung	Material	Qty.	MY1H16	MY1H20
8	Abstreifer	NBR	1	KB00257	KB00257
9	Kolbendichtung	NBR	1	KB00202	KB00202
12	O-ring	NBR	1	KA00057	KA00057


^{**} Mit folgender Bestell-Nr. können Sie Schmierfett separat bestellen: Bestell-Nr. Schmierfett: GR-S-010 (10 g)

Ausführung mit zentralem Luftanschluss Ø 10


Siehe S. 122 für Varianten des zentralen Luftanschlusses.


MY1H10G — Hub


Stoßdämpfer + einstellbarem Anschlagbolzen

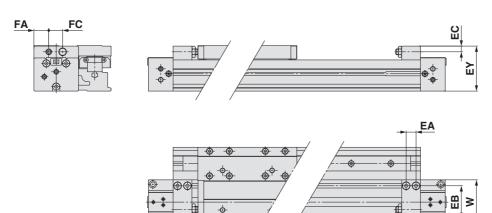
MY1H10G — Hub H

																				[mm]
Modell	PA	PB	PC	PD	PE	PF	PG	PP	Q	QQ	QW	RR	SS	TT	UU	VV	WW	XX	YH	Z
MY1H16□	40	40	7,5	21	9	3,5	3,5	7,5	153	9	30	11	3	9	10,5	10	7,5	22	25	160
MY1H20□	50	40	14,5	27	12	4,5	4,5	11,5	191	11	36	14,5	5	10,5	12	12,5	10,5	24	31,5	200

Bohrungsgröße für zentralen Luftanschluss an der Unterseite

Modell	WX	Υ	S	d	D	R	Verwendbarer O-Ring
MY1H16□	22	6,5	4	4	8,4	1,1	06
MY1H20□	24	8	6	4	8,4	1,1	C6

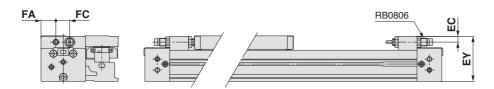
(Bearbeiten Sie die Montagefläche auf die oben stehenden Abmessungen [mm].)

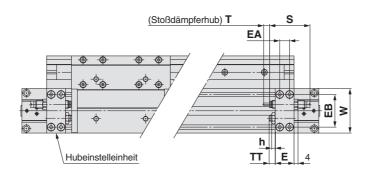


h. TT E

Hubeinstelleinheit

Mit einstellbarem Anschlagbolzen

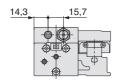


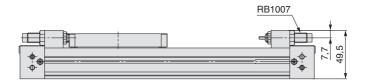

Hubeinstelleinheit

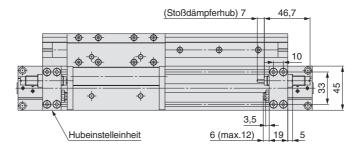
Applicable bore size	Е	EA	EB	EC	EY	FA	FC	h	TT	W
MY1H16	14,6	7	28	5,8	39,5	11,5	13	3,6	5,4 (max. 11)	37
MY1H20	19	10	33	5,8	45,5	15	14	3,6	6 (max. 12)	45

Stoßdämpfer für leichte Lasten + einstellbarem Anschlagbolzen

MY1H Kolben-Ø □ - Hub L

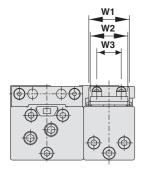

															[mm]
	Modell	Е	EA	EB	EC	EY	F	FA	FC	h	S	Т	TT	W	Modell Stoßdämpfer
	MY1H16	14,6	7	28	5,8	39,5	4	11,5	13	3,6	40,8	6	5,4 (Max. 11)	37	RB0806
i	MY1H20	19	10	33	5.8	45.5	4	15	14	3.6	40.8	6	6 (Max. 12)	45	RB0806

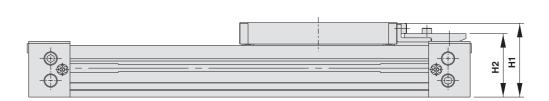

Serie MY1H

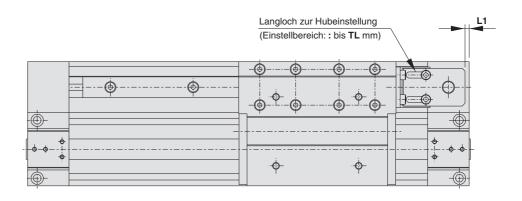

Hubeinstelleinheit

Stoßdämpfer für schwere Lasten + einstellbarem Anschlagbolzen

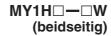
MY1H20□ - Hub H

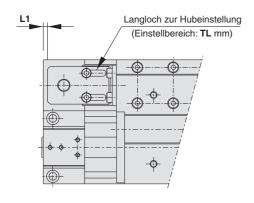


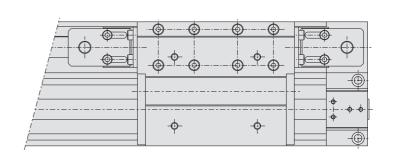



Mit Endlagenverriegelung Ø 16, Ø 20

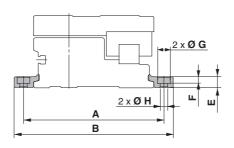
(Abmessungen für andere Ausführungen als die mit Endlagenverriegelung entsprechen denen der Standardausführung. Für weitere Informationen zu Abmessungen usw. siehe Seiten 89 und 90.

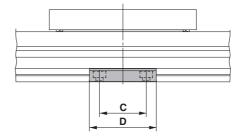

MY1H□-□E (rechte Seite)



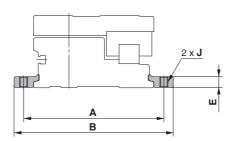


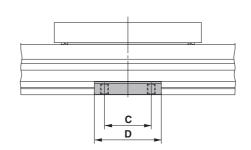
MY1H□-□F (linke Seite)




							[mm]
Modell	H1	H2	L1	TL	W1	W2	W3
MY1H16□	39,2	33	0,5	5,6	18	16	10,4
MY1H20□	45,7	39,5	3	6	18	16	10,4

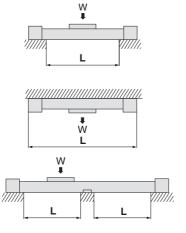
Serie MY1H


Befestigungselement


Befestigungselement A MY-S□A

Befestigungselement B MY-S□B

										[mm]
Modell	Verwendbarer Zylinder	Α	В	С	D	Е	F	G	Н	J
MY-S10A	MY1H10	53	61,6	12	21	3	1,2	6,5	3,4	M4 x 0,7
MY-S16A	MY1H16	71	81,6	15	26	4,9	3	6,5	3,4	M4 x 0,7
MY-S20 ^A	MY1H20	91	103,6	25	38	6,4	4	8	4,5	M5 x 0,8
MY-S25 ^A _B	MY1H25	105	119	35	50	8	5	9,5	5,5	M6 x 1
MY-S32A	MY1H32	130	148	45	64	11,7	6	11	6,6	M8 x 1,25
MY-S40 ^A	MY1H40	145	167	55	80	14,8	8,5	14	9	M10 x 1,5

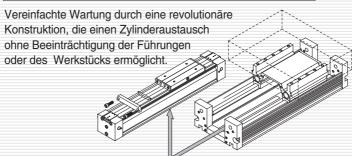

^{*} Eine Reihe von Befestigungselement besteht aus einem linken Träger und eine richtige Unterstützung.

Hinweise zur Verwendung des Befestigungselements

Bei Betrieb mit Langhub kann eine Durchbiegung des Zylinderrohrs abhängig von dessen Eigengewicht und dem Werkstückgewicht auftreten. In diesem Fall sollte ein Befestigungselement in der Hubmitte eingesetzt werden. Die Länge (L) des Befestigungselements darf die in der Grafik rechts gezeigten Werte nicht überschreiten.

Achtung

- Bei ungenauer Bemessung der Montageflächen des Zylinders kann die Verwendung eines Befestigungselements zu einer verminderten Zylinderleistung führen. Achten Sie deshalb darauf, das Zylinderrohr bei der Montage zu nivellieren. Bei Betrieb mit Langhub unter Einwirkung von Vibrationen und Stößen wird der Einsatz eines Befestigungselements auch dann empfohlen, wenn dessen Länge außerhalb des in der Grafik gezeigten Bereichs liegt.
- 2. Die Befestigungselemente dienen nicht zur Montage.

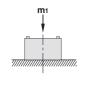


Serie MY1HT

Ausführung mit Präzisionsführung mit hoher Steifigkeit
Ø 50, Ø 63

Serie MY1HT Vor Inbetriebnahme

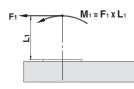
Max. zulässiges Moment/Max. zulässige Last

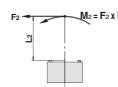

Modell	Kolben-Ø	Max. zulä	issiges Mon	nent [Nm]	Max. zulässige Last [kg]					
Modell	[mm]	M 1	M ₂	Мз	m ₁	m 2	m 3			
	50	140	180	140	200	140	200			
MY1HT	63	240	300	240	320	220	320			

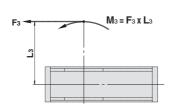
Die obigen Werte sind die max. zulässigen Werte für das Moment und die bewegte Masse. Beachten Sie die jeweiligen Grafiken für das max. zulässige Moment und die max. zulässige Last für spezifische Kolbengeschwindigkeiten.

Max. zulässiges Moment

Wählen Sie ein Moment, das innerhalb des in den Grafiken gezeigten Betriebsbereichs liegt. Beachten Sie, dass der Wert der max. zulässigen Last manchmal überschritten werden kann, auch wenn er innerhalb der in den Grafiken gezeigten Grenzwerte liegt. Überprüfen Sie deshalb auch die zulässige Last für die gewählten Betriebsbedingun-


Last [kg]





Moment [Nm]

Berechnung des Belastungsgrads der Führung

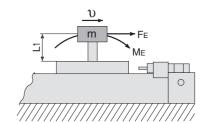
- 1. Max. zulässige Last (1), statisches Moment (2), und dynamisches Moment (bei Aufprall am Anschlag) (3) müssen für die Auswahlberechnungen bestimmt werden.
- * Verwenden Sie zur Berechnung $\mathfrak V$ a (Durchschnittsgeschwindigkeit) für (1) und (2), und $\mathfrak V$ (Aufprallgeschwindigkeit $\mathfrak V$ = 1.4 \(\mathcal{1}\)a) für (3).

Ermitteln Sie m max für (1) aus der Grafik der max. zulässigen Last (m1, m2, m3) und Mmax für (2) und (3) aus der Grafik des max. zulässigen Moments (M1, M2, M3).

- Anm. 1) Durch die Last usw. erzeugtes Moment im Ruhezustand des Zylinders. Anm. 2) Durch die Stoßbelastung am Hubende erzeugtes Moment (bei Aufprall am Anschlag).
- Anm. 3) Abhängig von der Werkstückform können mehrere Momente auftreten. In diesem Fall entspricht die Summe der Belastungsgrade $(\Sigma \alpha)$ der Summe aller Momente.
- 2. Referenzformeln (Dynamisches Moment bei Aufprall)

Verwenden Sie folgende Formeln zur Berechnung des dynamischen Moments unter Berücksichtigung des Aufpralls am Anschlag.

- m: Bewegte Masse [kg]
- F: Kraft [N]
- FE: Äquivalente Last zum Aufprall (bei Aufprall am Anschlag) [N]
- υa: Durchschnittsgeschwindigkeit [mm/s]
- M : Statisches Moment [Nm]


$$V = 1.4 \text{ Va [mm/s]}$$
 $F_E = \frac{1.4}{100} \text{ Va} \cdot \text{g} \cdot \text{m}$

$$ME = \frac{1}{3} \cdot FE \cdot L_1 = 4,57 \text{ } \text{$Va.m.L_1$ [Nm]}$$

- υ: Aufprallgeschwindigkeit [mm/s]
- L₁: Abstand zum Last schwerpunkt [m]
- M_E: Dynamisches Moment [N⋅m]
- Dämpfungskoeffizient Mit elastischer Dämpfscheibe= 4/100 (MY1B10, MY1H10) Mit pneumatischer Dämpfung = 1/100 Mit Stoßdämpfer = 1/100
- g: Erdbeschleunigung (9,8 m/s²)

Anm. 4) 1,4 $va\delta$ ist ein dimensionsloser Koeffizient zur Berechnung der Stoßkraft.

- Anm. 5) Mittlerer Lastkoeffizient (= $\frac{1}{3}$): Dieser Koeffizient dient zur Ermittlung des Durchschnitts des max. Lastmoments beim Aufprall auf den Anschlag unter Berücksichtigung der Kalkulation der Lebensdauer.
- 3. Nähere Angaben zur Modellauswahl finden Sie auf den Seiten 98 und 99.

Max. zulässige Last

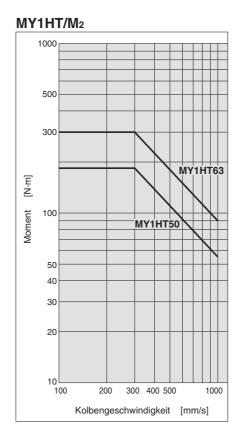
Betriebsbedingungen.

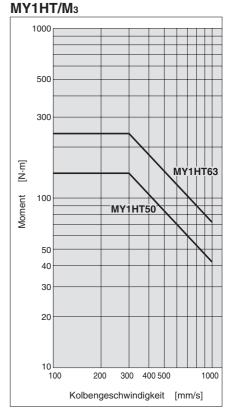
Wählen Sie eine Last, die innerhalb des in

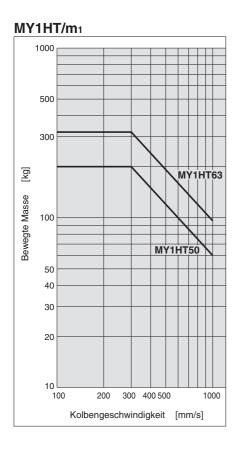
den Grafiken gezeigten Betriebsbereichs

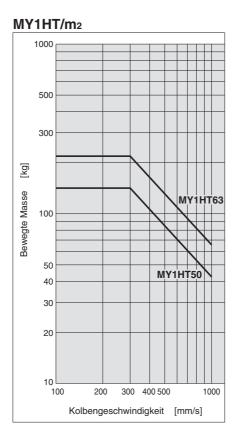
liegt. Beachten Sie, dass der Wert des max.

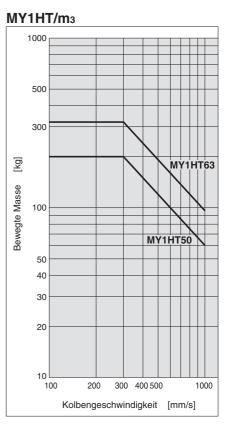
zulässigen Moments manchmal überschritten werden kann, auch wenn er innerhalb

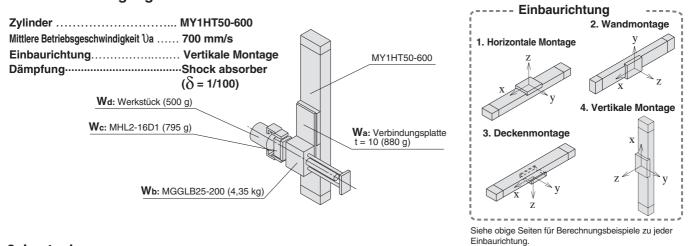

der in den Grafiken gezeigten Grenzwerte


liegt. Überprüfen Sie deshalb auch das

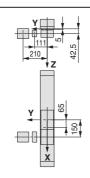

zulässige Moment für die gewählten




MY1HT/M₁ 1000 500 300 N. E **MY1HT63** Moment 100 MY1HT50 50 40 30 20 100 300 400 500 Kolbengeschwindigkeit [mm/s]



Serie MY1HT Modellauswahl


Wählen Sie das für Ihre Anwendung am besten geeignete Modell der Serie MY1HT gemäß der folgenden Vorgehensweise.

Berechnung des Belastungsgrads der Führung

1 Betriebsbedingung

2 Lastanbau

Masse und Schwerpunkt jedes Werkstücks

		, , , , ,		
Werk-			Schwerpunkt	
stück-Nr. Wn	Masse m	X-Achse Xn	Y-Achse Yn	Z-Achse Zn
Wa	0,88 kg	65 mm	0 mm	5 mm
Wb	4,35 kg	150 mm	0 mm	42,5 mm
Wc	0,795 kg	150 mm	111 mm	42,5 mm
Wd	0,5 kg	150 mm	210 mm	42,5 mm

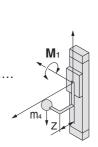
n = a, b, c, d

3 Berechnung des Gesamtschwerpunkts

$$\begin{split} & \textbf{m}_4 = \Sigma mn \\ &= 0.88 + 4.35 + 0.795 + 0.5 = \textbf{6.525 kg} \\ & \textbf{X} = \frac{1}{m_4} \times \Sigma \left(mn \times xn \right) \\ &= \frac{1}{6.525} \left(0.88 \times 65 + 4.35 \times 150 + 0.795 \times 150 + 0.5 \times 150 \right) = \textbf{138.5 mm} \\ & \textbf{Y} = \frac{1}{m_4} \times \Sigma \left(mn \times yn \right) \\ &= \frac{1}{6.525} \left(0.88 \times 0 + 4.35 \times 0 + 0.795 \times 111 + 0.5 \times 210 \right) = \textbf{29.6 mm} \\ & \textbf{Z} = \frac{1}{m_4} \times \Sigma \left(mn \times zn \right) \\ &= \frac{1}{6.525} \left(0.88 \times 5 + 4.35 \times 42.5 + 0.795 \times 42.5 + 0.5 \times 42.5 \right) = \textbf{37.4 mm} \end{split}$$

4 Berechnung des Belastungsgrads für statische Last

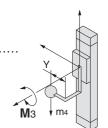
m4: Masse


m₄ ist die von der Schubkraft bewegbare Masse und entspricht in der Regel dem0,3 bis 0,7-fachen der Schubkraft. (Variiert in Abhängigkeit von der Betriebsgeschwindigkeit.)

 M_1 max (aus 1 der Grafik MY1MHT/ M_1) = 60 Nm

 $M_1 = m_4 \times g \times Z = 6,525 \times 9,8 \times 37,4 \times 10^{-3} = 2,39 \text{ Nm}$

Belastungsgrad $\alpha_1 = M_2/M_2 \text{ max} = 2.39/60 = 0.04$


Modellauswahl Serie MY1HT

M₃: Moment

M₃ max (aus 2 der Grafik MY1HT/M₃) = 60 Nm

 $M_3 = m_4 \times g \times Y = 6,525 \times 9,8 \times 29,6 \times 10^{-3} = 1,89 \text{ Nm}$

Belastungsgrad $\alpha_2 = M_3/M_3 \text{ max} = 1,89/60 = 0,03$

5 Berechnung des Belastungsgrads für dynamisches Moment

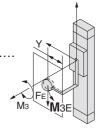
Äquivalente Last bei Aufprall FE

FE =
$$\frac{1.4}{100}$$
 x va x g x m = $\frac{1.4}{100}$ x 700 x 9.8 x 6.525 = 626.7 N

M₁E: Moment

 $M_{1}E$ max (aus 3 der Grafik MY1HT/ M_{1} in der 1.4 ν a = 980 mm/s) = 42,9 Nm

$$M_1E = \frac{1}{3} \times FE \times Z = \frac{1}{3} \times 626,7 \times 37,4 \times 10^{-3} = 7,82 \text{ Nm}$$


Belastungsgrad $\alpha_3 = M_1E/M_1E \text{ max} = 7,82/42,9 = 0,18$

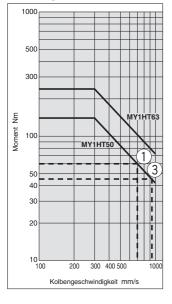
 M_3E max (aus 4 der Grafik MY1HT/ M_3 in der 1,4 νa = 980 mm/s) = 42,9 Nm

$$M_3E = \frac{1}{3} \times FE \times Y = \frac{1}{3} \times 626,7 \times 29,6 \times 10^{-3} = 6,19 \text{ Nm}$$

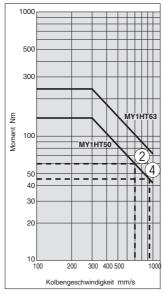
Belastungsgrad $C4 = M_3E/M_3E \text{ max} = 6,19/42,9 = 0,14$

6 Summieren und Überprüfen der Belastungsgrade der Führung

$$\Sigma \alpha = \Omega 1 + \Omega 2 + \Omega 3 + \Omega 4 = 0.39 \le 1$$


Die obige Berechnung ergibt einen zulässigen Wert; das ausgewählte Modell ist verwendbar.

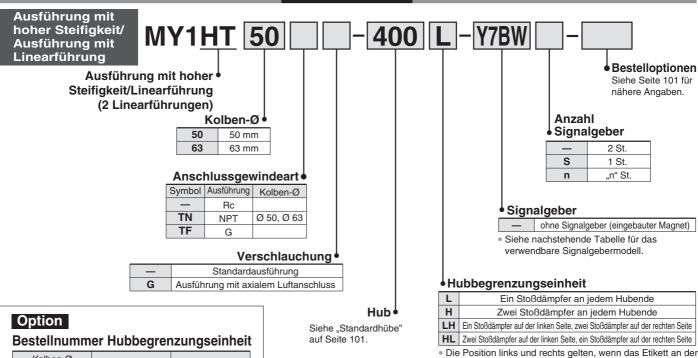
Wählen Sie einen separaten Stoßdämpfer.


Ergibt die Summe der Belastungsgrade der Führung $\Sigma\alpha$ in der obigen Formel einen Wert größer 1, ziehen Sie eine geringere Geschwindigkeit, einen größeren Kolben-Ø oder eine andere Produktserie in Betracht.

Zulässiges Moment

MY1HT/m

MY1HT/M₃

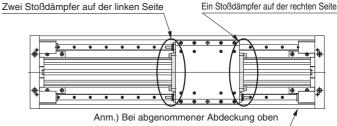


Kolbenstangenloser Bandzylinder Ausführung mit hoher Steifigkeit / Linearführung

Serie MY1HT

Ø 50, Ø 63

Bestellschlüssel



Kolben-Ø [mm]	50	63
Ausführung Einheit	MYT-A50L	MYT-A63L

Bestellnummer Stützelement

Kolben-Ø [mm] Ausführung	50	63				
Stützelement A	MY-S	S63A				
Stützelement B	MY-S63B					

Für weitere Informationen zu Abmessungen usw. siehe Seite 106. Ein Stützelement-Set enthält ieweils ein Element für die linke und für die rechte Seite Frontseite angebracht ist. Siehe nachstehende Abbildung für Details

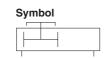
Lage des Etiketts

Verwendbare Signalgeber/Siehe Seiten 107 bis 117 für nähere Informationen zu Signalgebern.

		Elektrischer	-se	Elektrischer	Lá	astspannu	ıng	Signalgel	permodell	Anschlusskabellänge [m			vorver-		
Aus- führung	Sonderfunktion	Eingang	Betriebs- anzeige	Anschluss	_	C	AC	senkrecht	aarada	0,5	3	5	drahteter	zulässi	ge Last
lulliulig		gg	Bel	(Ausgang)	U		AC	Senkrecht	gerade	()	(L)	(Z)	Stecker		
er				3-Draht (NPN)		5 V. 12 V		Y69A	Y59A	•	•	0	0	10 04	
Signalgeber				3-Draht (PNP)		5 V, 12 V		Y7PV	Y7P	•	•	0	0	IC-Steuerung	
igne		Einge-		zweidraht		12 V		Y69B	Y59B	•	•	0	0	_	
	D'	gossene	ja	3-Draht (NPN)	24 V	5 V, 12 V	_ [Y7NWV	Y7NW	•		0	0		Relais, SPS-
isch	Diagnoseanzeige (2-farbig)	Kabel		3-Draht (PNP)				Y7PWV	Y7PW	•	•	0	0	10-Steuerung	0.0
elektronischer	(2-laibig)			zweidraht				Y7BWV	Y7BW	•	•	0	0		
elel	wasserfest (2-farbige-Anzeige)			zweidrani		12 V		_	Y7BA**	_	•	0	0		
Reed- Schalter		Einge-	ja	3-Draht (entspricht NPN)	_	5 V	_	1	Z 76	•	•	_	_	IC-Steuerung	_
Re		gossene Kabel		zweidraht	24.1/	10.1/	100 V	_	Z 73	•		•	_	_	Relais,
0,	S		nein	zweidraht	24 V	24 V ∣ 12 V ⊢	max. 100 V	_	Z80	•		_	_	IC-Steuerung	SPS-

- ** Wasserfeste Signalgeber können auf den o. g. Modellen montiert werden, in diesem Fall kann SMC jedoch die Wasserfestigkeit nicht garantieren.
- * Symbole für Anschlusskabellänge: 0,5 m ····· (Beispiel) Y7BW

3 m ····· L (Beispiel) Y7BWL


5 m ····· Z (Beispiel) Y7BWZ

- Setzen Sie sich bei Verwendung wasserfester Modelle mit den o.g. Bestellnummer mit SMC in Verbindung.

 * Elektronische Signalgeber mit der Markierung "O" werden auf Bestellung gefertigt.
 - Zum Umrüsten von Signalgebern sind gesonderte Signalgeberhalter (BMP1-032) erforderlich.
- * Neben den o.g. Signalgebern können verschiedene andere verwendet werden. Weitere Einzelheiten finden Sie auf Seite 117.
- * Signalgeber werden mitgeliefert (nicht montiert). (Siehe Seiten 115 bis 117 für nähere Angaben hinsichtlich Signalgebermontage usw.)

Technische Daten

Kolben-Ø [mm]		50	63	
Medium		Druc	kluft	
Wirkungsweise		doppelt	wirkend	
Betriebsdruckbereich		0,1 bis (),8 MPa	
Prüfdruck		1,2 MPa		
Umgebungs- und Medienten	peratur	5 bis 60 °C		
Kolbengeschwindigke	it	100 bis 1000 mm/s		
Dämpfung		Stoßdämpfer auf beiden Seiten (standard)		
Schmierung		lebensdauergeschmiert		
Hubtoleranz		bis 2700+ ^{1,8} , 2701 bis 5000+ ^{2,8}		
Anschlussgröße Anschlus	s seitlich	Rc 3/8		

Anm.) Betreiben Sie den Zylinder mit einer Geschwindigkeit innerhalb des Bereichs der Dämpfungskapazität. Siehe Seite 102.

Technische Daten Hubbegrenzungseinheit

verwendbarer Kolben-Ø [mm]	5	0	63		
	L	Н	L	Н	
Einheitssymbol, Inhalt	RB2015 und Einstellbolzen: jeweils 1 Set	RB2015 und Einstellbolzen: jeweils 2 Sets	RB2725 und Einstellbolzen: jeweils 1 Set	RB2725 und Einstellbolzen: jeweils 2 Sets	
Hub-Feineinstellbereich [mm]	0 bis	s -20	0 bis -25		
Hub-Einstellbereich		Siehe Seite 103 hinsi	chtlich der Einstellung.		

^{*} Der Hubeinstellbereich gilt für eine Seite bei Montage auf einem Zylinder.

Stoßdämpfermodell		RB2015 1 St.	RB2015 2 St.	RB2725 1 St.	RB2725 2 St.	
Max. Energiea	ufnahme [J]	58,8	88,2 ^{Anm.)}	147	220,5 ^{Anm.)}	
Hubdämpfun	g [mm]	15	15	25	25	
Max. Aufprallgeschwindigkeit [mm/s]		10	00	1000		
max. Schaltfred	uenz [Zyklus/min]	25	25	10 10		
Fadaulsueft [N]	ausgefahren	8,34	16,68	8,83	17,66	
Federkraft [N]	eingefahren	20,50	41,00	20,01	40,02	
Betriebstemperaturbereich [°C]			5 bi	s 60		

Anm.) Die max. Energieaufnahme für 2 St. wird durch Multiplikation des Werts für 1 St. mit 1,5 berechnet.

Theoretische Leistung

								(N)	
Kolben -Ø	Kolben- fläche	Betriebsdruck [MPa]							
[mm]	[mm] ²]	0,2	0,3	0,4	0,5	0,6	0,7	0,8	
50	1962	392	588	784	981	1177	1373	1569	
63	3115	623	934	1246	1557	1869	2180	2492	

Anm.) Theoretische Zylinderkraft [N] = Druck [MPa] x Kolbenfläche [mm²]

Made to Order

Bestelloptionen: Technische Daten (Nähere Angaben finden Sie auf den Seiten 118 bis 120.]

Symbol	Technische Daten
-XB10	Zwischenhubausführung
-XC67	NBR-Beschichtung im Staubschutzband
20-	Kupferfrei

Standardhub

Kolben-Ø [mm]	Standardhub [mm]	Zwischen- hub (-XB10)	Langhub (-XB11)	maximal herstellbarer Hub
50 [,] 63	200, 400, 600, 800, 1000, 1500, 2000	Zwischenhübe 201 bis 1999 mm (1-mm-Schritte) Von Standardhüben abweichende Hübe	_	5000

Anm.) Zylinder mit anderen Hüben als die Standardhubausführung werden auf Anfrage gefertigt. Bestellbeispiel

* Fügen Sie für Zwischenhübe das Symbol "-XB10" an das Ende der Bestellnummer.

Gewicht

								[kg]		
	Kolben-Ø [mm]	Gewicht Basistyp			Gewicht der beweglichen	Gewicht des Stützelements (pro Set)	Gewicht der Hubbegrenzungseinhe			
				25 mm Hub	Teile	Ausführung A und B	Gewicht Einheit L	Gewicht Einheit LH	Gewicht Einheit H	
	50	30,62	0,87	5,80	0,17	0,62	0,93	1,24		
	63	41,69	1,13	8,10	0,17	1,08	1,62	2,16		

Berechnung: (Beispiel): MY1HT50-400L

- Basisgewicht ----- 30,62 kg
- zusätzliches Gewicht ··· 0,87 kg/Hub 25
- Gewicht Einheit L 0,62 kg

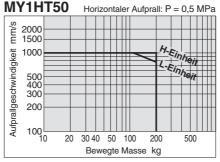
• Zylinderhub----- 400 Hub

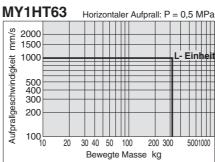
 $30,62 \text{ kg} + 0,87 \text{ kg x } 400 / 25 + 0,62 \text{ kg x } 2 \cong 45,8 \text{ kg}$

^{*} Die Lebensdauer des Stoßdämpfers entspricht je nach Betriebsbedingungen nicht der Lebensdauer der MY1HT-Zylinder. Entnehmen Sie die Austauschintervalle den Produktspezifischen Sicherheitshinweisen der Serie RB.

Dämpfungskapazität

Auswahl der Dämpfung

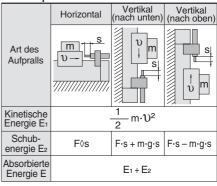

<Hubeinstelleinheit integriertem Stoßdämpfer>


L-Einheit

Verwenden Sie diese Einheit, wenn eine Dämpfung außerhalb des Dämpfungsbereichs der pneumatischen Dämpfung erforderlich ist, selbst wenn die Last und die Geschwindigkeit innerhalb der Grenzwerte der pneumatischen Dämpfung liegen oder wenn der Zylinder in einem Last- und Geschwindigkeitsbereich betrieben wird, der über den Grenzwerten der pneumatischen Dämpfung und unterhalb der der L-Einheit liegt.

Verwenden Sie diese Einheit, wenn der Zylinder in einem Last- und Geschwindigkeitsbereich betrieben wird, der über den Grenzwerten der L-Einheit und unter denen der H-Einheit liegt.

Dämpfungskapazität der Hubeinstelleinheit



Anzugsmoment der Halteschrauben des Anschlagbolzens

Anzugsmoment der Halteschrauben des Anschlagbolzens Einheit: Nm

Kolben-Ø (mm)	Anzugsmoment
50	0,6
63	1,5

Berechnung der Dämpfungsenergie für Hubein-stelleinheit mit integriertem Stoßdämpfer

Symbole

- $\dot{\mathfrak{V}}$: Schlittengeschwindigkeit [m/s]
- m: Masse des aufprallenden Objekts [kg] F: Zylinderschub [N]
- g: Gravitationsbeschleunigung (9,8 m/s²)
- S: Stoßdämpferhub [m]
 Anm.) Die Geschwindigkeit des Schlittens ist zum

Zeitpunkt des Aufpralls am Stoßdämpfer gemessen.

♠ Produktspezifische Sicherheitshinweise

Montage

🗥 Achtung

Achten Sie darauf, dass keine großen Stoßkräfte oder übermäßigen Momente auf den Schlitten wirken .

Der Schlitten wird von Präzisionsführungen gehaltenachten Sie deshalb bei der Montage von Werkstücken darauf, dass keine starken Stoßkräfte oder übermäßigen Momente auf den Schlitten

2. Richten Sie bei Anbau einer Last mit externem Führungsmechanismus diese sorgfältig aus.

Kolbenstangenlose Bandzylinder können innerhalb des für jede Führungsart zulässigen Bereichs mit einer direkt angebauten Last eingesetzt werden; jedoch ist bei Anbau einer Last mit externem Führungsmechanismus eine sorgfältige Ausrichtung notwendig. Da die Abweichung von der Mittelachse mit zunehmender Hub-länge größer wird, sollte eine Anbaumethode gewählt werden, die diese Schwankungen kompensieren kann (Ausgleichselement).

3. Halten Sie ihre Hände und Finger nicht in das Gehäuse, wenn dieses aufgehängt ist.

Verwenden Sie Transportösen zur Aufhängung, da das Gehäuse schwer ist (Die Transportösen werden nicht mit dem Gehäuse geliefert).

Betrieb

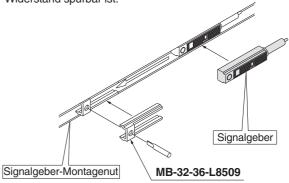
∕!\ Achtung

1. Verstellen Sie nicht unbedacht die Einstellung der Führungseinstelleinheit.

Die Führung ist werkseitig voreingestellt und unter normalen Betriebsbedingungen ist keine Neueinstellung erforderlich. Die Einstellung der Führungseinstelleinheit sollte deshalb nicht unbedacht verändert werden.

Betrieb

⚠ Achtung


2. Unterdruck führt zu Druckluftleckagen.

Beachten Sie, dass unter Betriebsbedingungen, bei denen aufgrund externer Kräfte oder von Trägheitsmomenten Unterdruck im Zylinder erzeugt wird, Druckluftleckagen durch die Trennung des Dichtungsbandes auftreten können.

Signalgebermontage

∕!\ Achtung

- 1. Stecken Sie den Signalgeber in die Signalgeber-Montagenut des Zylinders ein, schieben Sie ihn dann seitwärts in der unten gezeigten Richtung und positionieren Sie ihn im Signalgeberhalter so dass der Halter über dem Signalgeber Richtung liegt.
- Verwenden Sie zum Fixieren des Signalgebers einen Feinschraubendreher und ziehen Sie ihn mit einem Anzugsmoment von 0,05 bis 0,1 Nm fest. In der Regel erreicht man dies, indem man um weitere 90 anzieht, sobald ein leichter Widerstand spürbar ist.

Hubeinstellung

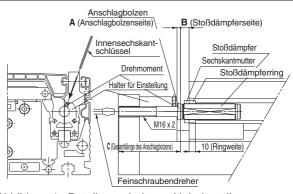
Achtung

- Um den Anschlagbolzen innerhalb des Einstellbereichs A zu justieren, stecken Sie, wie in Abbildung 1 ersichtlich, einen Sechskantschlüssel von oben in die Innensechskantschraube, um diese ca. eine Umdrehung zu lösen, und stellen Sie anschließend den Anschlagbolzen mit einem Feinschraubendreher ein.
- Falls die unter 1 beschriebene Einstellung nicht ausreicht, kann der Stoßdämpfer justiert werden. Entfernen Sie, wie in Abbildung 2 ersichtlich, die Abdeckungen und stellen Sie weiter ein, indem Sie die Sechskantmutter lösen.

 In der Tabelle 1 sind mehrer Abmessungen dargestellt. Führen Sie nie eine Einstellung durch, die über die Abmessungen der Tabelle hinausgeht, da dies zu Unfällen oder Schäden führen kann.

(mm)

63


6 bis 31

14 bis 74

102

85

schraube

Deckel oben

Abbildung 1. Detailausschnitt zur Hubeinstellung

AMAX

BMAX

BMAX

Seitliches
Gehäuse

Abbildung 2. Montage und Demontage des Deckels

Abbildung 3. Detailausschnitt zur max. Hubeinstellung

Vorgehensweise zur Montage und Demontage

Innensechskantschraube

△Achtung

Tabelle 1

Kolben-Ø (mm)

A bis A MAX

B bis B MAX

Max. Einstellbereich

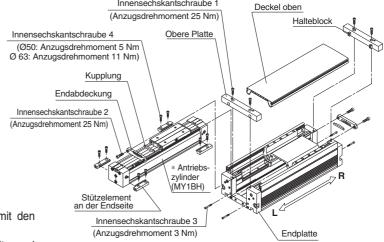
Vorgehensweise zur Demontage

- Entfernen Sie die Innensechskantschrauben 1 und anschließend die oberen Platten.
- 2. Entfernen Sie den Deckel oben.
- Entfernen Sie die Innensechskantschrauben 2 und anschließend die Endabdeckung und die Kupplungen.
- 4. Entfernen Sie die Innensechskantschrauben 3.

50

6 bis 26

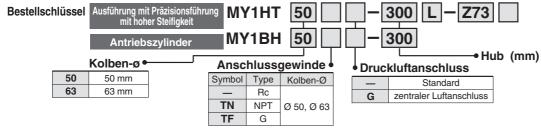
14 bis 54


87

60

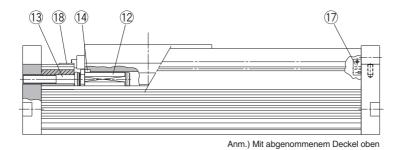
- Entfernen Sie die Innensechskantschrauben 4 und anschließend die Stützelemente an der Endseite.
- 6. Entfernen Sie den Zylinder.

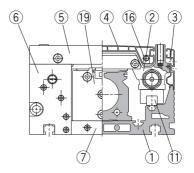
Vorgehensweise zur Montage

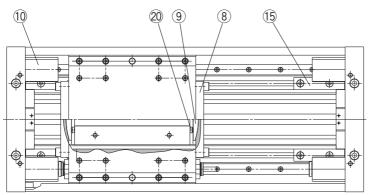

- 1. Führen Sie den MY1BH-Zylinder ein.
- Fixieren Sie die Stützelemente an der Endseite vorläufig mit den Innensechskantschrauben 4.
- Drücken Sie die Stützelemente und den Zylinder mit zwei Innensechskantschrauben 3 an der L- oder R-Seite.
- 4. Ziehen Sie die Innensechskantschrauben 3 auf der anderen Seite fest, um das Spiel in axialer Richtung zu beseitigen. (Zu diesem Zeitpunkt entsteht ein Freiraum zwischen dem Stützelement an der Endseite und der Endplatte; dies stellt aber kein Problem dar.)
- 5. Ziehen Sie die Innensechskantschrauben 4 wieder fest.

- Befestigen Sie die Endabdeckung mit den Innensechskantschrauben 2 und vergewissern Sie sich, dass sich die Kupplung in der richtigen Richtung befindet.
- 7. Setzen Sie den oberen Deckel auf das Gehäuse.
- Stecken Sie die Halteblöcke in den oberen Deckel und ziehen sie die oberen Platten mit den Innensechskantschrauben 1 fest.

* Antriebszylinder (Serie MY1BH)


Da es sich bei dem MY1BH um einen Antriebszylinder für die Serie MY1HT handelt, unterscheidet sich dessen Konstruktion von der der Serie MY1B. Setzen Sie die Serie MY1B nicht als Antriebszylinder ein, da dies zu Schäden führt.

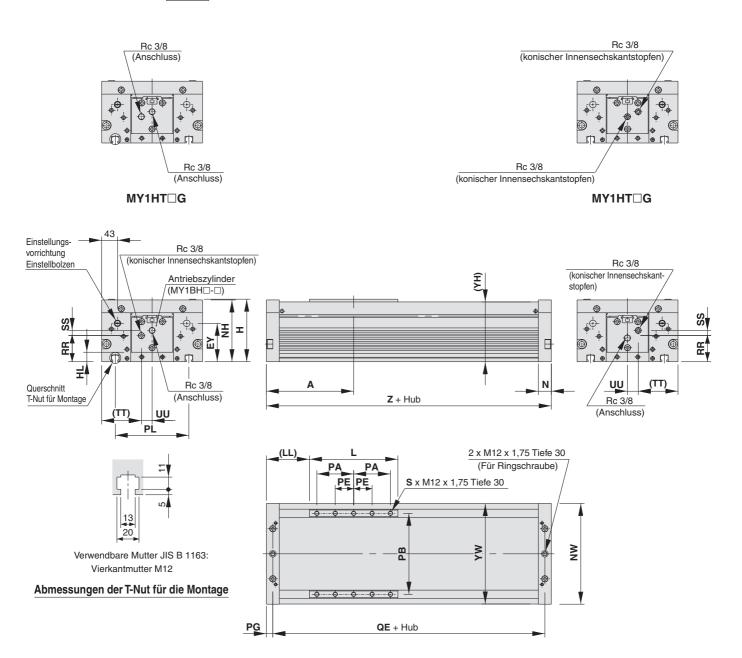



Serie MY1HT

Konstruktion

Standardausführung

Anm.) Mit abgenommenem Deckel oben

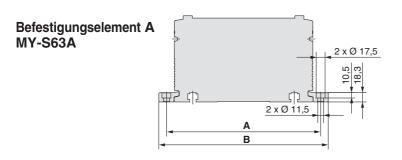

Stückliste

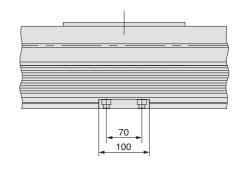
Pos.	Bezeichnung	Material	Bemerkung
1	Führungsrahmen	Aluminium	harteloxiert
2	Schlitten	Aluminium	harteloxiert
3	Seitliches Gehäuse	Aluminium	harteloxiert
4	Deckel oben	Aluminium	harteloxiert
5	Obere Platte	Aluminium	harteloxiert
6	Endplatte	Aluminium	harteloxiert
7	Grundplatte	Aluminium	harteloxiert
8	Endabdeckung	Aluminium	chromatiert
9	Kupplung	Aluminium	chromatiert
10	Halter für Einstellung	Aluminium	harteloxiert
11	Führung	_	
12	Stossdämpfer	_	
13	Anschlagbolzen	Stahl	vernickelt
14	Dämpfungsring	Stahl	vernickelt
15	Stützelement an der Endseite	Aluminium	harteloxiert
16	Block oben	Aluminium	chromatiert
17	Block seitlich	Aluminium	chromatiert
18	Seitenplatte	Spezialkunststoff	
19	Kolbenstangenloser Zylinder	_	MY1BH
20	Anschlag	Stahl	vernickelt

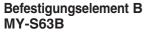
Standardausführung/Ausführung mit axialem Luftanschluss Ø 50, Ø 63

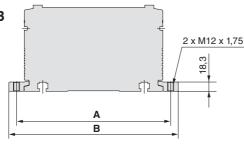
Für Varianten des axialen Leitungsanschlusses siehe Seite 122.

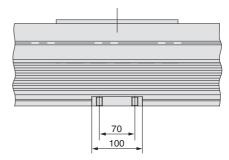
MY1HT50□/63□ — Hub



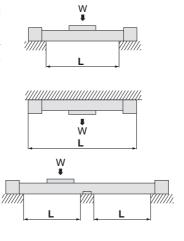

													[mm]
Modell	Α	EY	Н	HL	L	LL	N	NH	NW	PA	PB	PE	PG
MY1HT50□	207	97,5	145	23	210	102	30	143	254	90	200	-	15
MY1HT63□	237	104,5	170	26	240	117	35	168	274	100	220	50	17,5

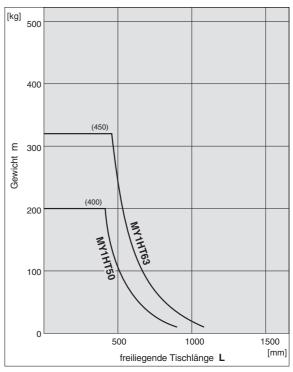

										[mm]
Modell	PL	QE	RR	S	SS	TT	UU	YH	YW	Z
MY1HT50□	180	384	57	6	10	103,5	23,5	136,4	253	414
MY1HT63□	200	439	71,5	10	13,5	108	29	162,6	273	474


Serie MY1HT


Befestigungselement

Dimensions			[mm]
Modell	Verwendbarer Zylinder	Α	В
MY-S63A	MY1HT50	284	314
IVI 1-303B	MY1HT63	304	334

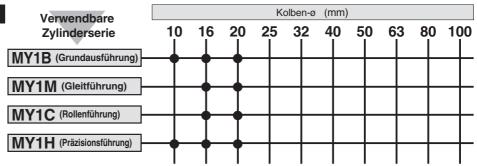

^{* *} Set beinhaltet zwei Elemente für rechts und links.


Hinweise zur Verwendung des Befestigungselements

Bei Betrieb mit Langhub kann eine Durchbiegung des Zylinderrohrs abhängig von dessen Eigengewicht und dem Werkstückgewicht auftreten. In diesem Fall sollte ein Befestigungselement in der Hubmitte eingesetzt werden. Die Länge (L) des Befestigungselements darf die in der Grafik rechts gezeigten Werte nicht überschreiten.

- Bei ungenauer Bemessung der Montageflächen des Zylinders kann die Verwendung eines Stützelements zu einer verminderten Zylinderleistung führen. Achten Sie deshalb darauf, das Zylinderrohr bei der Montage zu nivellieren. Bei Betrieb mit Langhub unter Einwirkung von Vibrationen und Stößen wird der Einsatz eines Befestigungselements auch dann empfohlen, wenn dessen Länge außerhalb des in der Grafik gezeigten Bereichs liegt.
- 2. Die Befestigungselemente dienen nicht zur Montage.

Serie MY1 Technische Daten Signalgeber


verwendbare Signalgeber

Signalgebermodelle		Elektrischer Eingang		
	D-A9□	eingegossene Kabel (axial)		
Reed-Schalter	D-A9□V	eingegossene Kabel (senkrecht)		
	D-Z7□, Z80	eingegossene Kabel (axial)		
	D-M9□	eingegossene Kabel (axial)		
	D-M9□V	eingegossene Kabel (senkrecht)		
	D-M9□W	eingegossene Kabel (2-farbig Anzeige, axial)		
	D-M9□WV	eingegossene Kabel (2-farbig Anzeige, senkrecht)		
Elektronische	D-M9□A	eingegossene Kabel (wasserfest, 2-farbige Anzeige, integriert)		
Signalgeber	D-M9□AV	eingegossene Kabel (wasserfest, 2-farbige Anzeige, senkrecht)		
	D-Y59A, Y59B, Y7P	eingegossene Kabel (axial)		
	D-Y69A, Y69B, Y7PV	eingegossene Kabel (senkrecht)		
	D-Y7□W	eingegossene Kabel (2-farbig Anzeige, axial)		
	D-Y7□WV	eingegossene Kabel (2-farbig Anzeige, senkrecht)		

Reed-Schalter D-A9 / 3-Draht, 2-Draht (Direktmontage)

D-A90(V), D-A93(V), D-A96(V)

Verwendbare Signalgeber

D-A90, D-A90V (ohne Betriebsanzeige)

Signalgebermodell	D-A90		D-A90V	
Elektrischer Eingang	axial			vertikal
Anwendung	IC-Steuerung, Relais, SPS			
Spannungsversorgung	max. 24 V _{DC}	max.	48 V AC	max.100 V _{DC}
Max. Strom	50 mA	40	mA	20 mA
Kontaktschutz-Schaltkreis	ohne			
Innerer Spannungsabfall	max. 1 V (inkl. Anschlusskabellänge von 3 m)			

D-A93, A93V, D-A96, A96V (mit Betriebsanzeige)

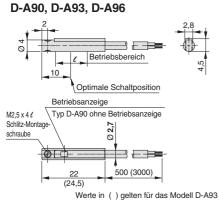
		•			,	
Signalgebermodell	D-/	493	D-A	.93V	D-A96	D-A96V
Elektrischer Eingang	ax	rial	vertikal		axial	vertikal
Anwendung		Relais, SPS		IC-Steuerung		
Spannungsversorgung	24 V DC	100 V AC	24 V DC	100 V AC	4 bis 8	V DC
Strombereich und max. Strom	5 bis 40 mA	5 bis 20 mA	5 bis 40 mA	5 bis 20 mA	20 mA	
Kontaktschutz-Schaltkreis	ohne					
Innerer Spannungsabfall		(bis 20 mA) (bis 40 mA)	max. 2,7 V		max. 0,8 V	
Betriebsanzeige	EIN: rote LED					

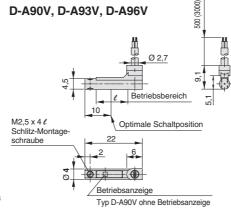
Anschlusskabel Ölbeständiges Vinylkabel, Ø 2,7, 0,5 m

D-A90(V), D-A93(V) 0,18 mm² x 2-Draht (braun, blau [rot, schwarz])

D-A96(V) 0,15 mm² x 2 Brank (braun, schwarz, blau [rot, weiß, schwarz])

U-A96(V) 0, 13 min' x 3-Drant (braun, schwarz, blau [rot, weiß, schwarz) blau [rot, weiß, schwarz] blau [rot, weiß, schwa

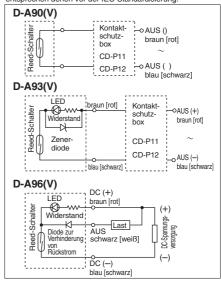

• Schaltzeit 1000 V AC über 1min. (zwischen Anschlusskabel und Gehäuse)
• Schaltzeit 1,2 ms • Umgebungstemperatur — -10 bis 60 °C


• Schaltzeit — 1,2 ms • Umgebungste • Stossfestigkeit — 300 m/s² • Kriechstrom -

Schutzklasse ———— IEC529 Standard IP67, wasserfest (JISC0920)

• Zur Bestellung von 3 m Kabellänge fügen Sie "L" am Ende der Bestell-Nr. hinzu. Beispiel: D-A90L

Abmessungen Signalgeber


Signalgebergewicht

Einheit: g

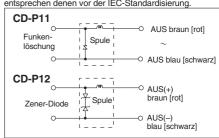
Modell	Anschlusskabellänge 0,5 m	Anschlusskabellänge 3
D-A9/A9□V	8	41

Interner Schaltkreis Signalgeber

Die Farben der Anschlusskabel innerhalb der () entsprechen denen vor der IEC-Standardisierung

Kontaktschutzboxen/CD-P11, CD-P12

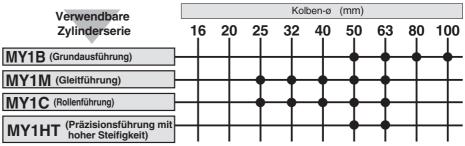
D-A9□ und D-A9□ -Signalgeber haben keinen inneren Kontaktschutz-Schaltkreis.


- Bei der Anwendung handelt es sich um eine induktive Last.
- 2. Die Kabellänge zur Last beträgt min. 5 m.
- Die Betriebsspannung beträgt 100 V AC. In jedem der o.g. Fälle sollte eine Kontaktschutzbox vewendet werden.

Technische Daten Kontaktschutzbox

Bestell-Nr.	CD-P11	CD-P12			
Spannungsversorgung	100 V AC	24 V DC			
Max. Strom	25 mA	50 mA			
* Anschlusskabellänge Signalgeberseite 0,5 m					
Anwendungsseite 0,5 m					

Innerer Schaltkreis Kontaktschutzbox


Die Farben der Anschlusskabel innerhalb der () entsprechen denen vor der IEC-Standardisierung

Reed-Schalter D-Z7, Z80/3-Draht, 2-Draht (Direktmontage)

D-Z73, D-Z76, D-Z80

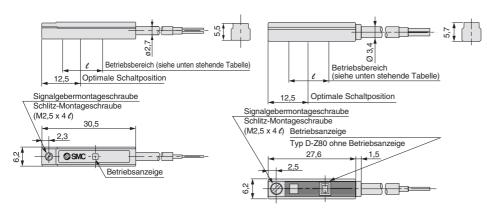
Verwendbare Signalgeber

D-Z7□ (mit Betriebsanzeige)

Signalgebermodell	D-2	D-Z76				
Elektrischer Eingang		axial				
Anwendung	Relais	IC-Steuerung				
Spannungsversorgung	24 V DC	4 bis 8 V DC				
Strombereich und max. Strom	5 bis 40 mA 5 bis 20 mA		20 mA			
Kontaktschutz-Schaltkreis		ohne				
Innerer Spannungsabfall	max. 2.4 V (bis 20 mA)/max. 3 V (bis 40 mA) max. 0,8 V					
Betriebsanzeige	EIN: rote LED					

D-Z80 (ohne Betriebsanzeige)

Signalgebermodell	D-Z80				
Elektrischer Eingang	axial				
Anwendung	Relais, SPS, IC-Steuerung,				
Spannungsversorgung	max. 24 V _{DC} max. 48 V _{DC} max. 100 V _{DC} max. 100 V _{DC}				
Max. Strom	50 mA 40 mA 20 mA				
Kontaktschutz-Schaltkreis	ohne				
Innerer Spannungsabfall	max. 1 V (inkl. Anschlusskabellänge von 3 m)				


- Kriechstrom
- Schaltzeit
- 1,2 ms Ölbeständiges Vinylkabel, Ø 3,4, Anschlusskabe

0,2 mm², 2-Draht (braun, blau [rot, schwarz]), 3- Draht (braun, schwarz, blau [rot, weiß, schwarz]), 0,5 m* D-Z73 nur Ø 2,7, 0,18 mm², 2- Draht)

- Stossfestigkeit 300 m/S² Isolationswiderstand
- $50 \text{ M}\Omega$ oder mehr bei 500 V DC (zwischen Anschlusskabel und Gehäuse) Prüfspannung 1500 V AC über 1 min. (zwischen Anschlusskabel und Gehäuse)
- Umgebungstemperatur 10 bis 60 °C
- IEC529 Standard IP67, wasserfest (JISC0920)
- *Zur Bestellung von 3 m Kabellänge fügen Sie "L" am Ende der Bestell-Nr. hinzu. Beispiel: D-Z73L

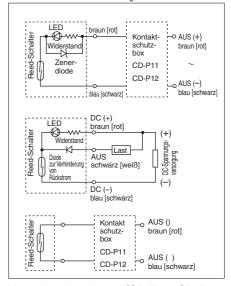
Abmessungen Signalgeber

D-Z73 D-Z76, Z80

Kolben-ø	Kolben-Ø (mm)		
Betriebsbereich	180	200	
Betriebsbereich ℓ (mm)	15	15	

Anm.) Der Betriebsbereich ist als Richtwert inkl. Hysterese zu verstehen, es wird aber keine Gewähr über-

> In Abhängigkeit der Betriebsumgebungen können grosse Schwankungen (bis zu 30 %) auftreten.


Signalgebergewicht

Einheit: g

Modell	Anschlusskabellänge 0,5 m	Anschlusskabellänge 3 m
D-Z73	7	31
D-Z76	10	55
D-Z80	9	49

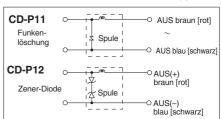
Interner Schaltkreis Signalgeber

Die Farben der Anschlusskabel innerhalb der () entsprechen denen vor der IEC-Standardisierung.

Kontaktschutzboxen/CD-P11, CD-P12

D-Z7□ und D-Z80□ -Signalgeber haben keinen inneren Kontaktschutz-Schaltkreis.

- 1. Bei der Anwendung handelt es sich um eine induktive Last.
- Die Kabellänge zur Last beträgt min. 5 m.
- Die Betriebsspannung beträgt 100 V AC. In jedem der o.g. Fälle sollte eine Kontakt-schutzbox verwendet werden.

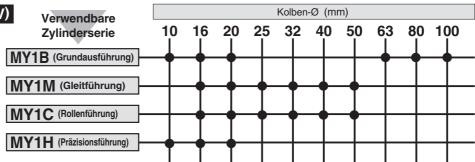

Technische Daten Kontaktschutzbox

Bestell-Nr.	CD-P11	CD-P12
Spannungsversorgung	100 V AC	24 V DC
Max. Strom	25 mA	50 mA

Die Signalgebermodelle D-280 sind für max. 100 V AC. Da keine besondere Spannung spezifiziert ist, wählen Sie das Modell entsprechend der Betriebsspannung.

Innerer Schaltkreis Kontaktschutzbox

Die Farben der Anschlusskabel innerhalb der ()



Elektronische Signalgeber D-M9/3-Draht, 2-Draht (Direktmontage)

D-M9N (V), D-M9P (V), D-M9B (V)

Verwendbare Signalgeber

D-M9□, D-M9□V (mit Betriebsanzeige)

Signalgebermodell	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Elektrischer Eingang	axial	vertikal	axial	vertikal	axial	vertikal
Anschlussart		3-D	raht		2-D	raht
Ausgangsart	NPN PNP			_	_	
Anwendung	IC-Steuerung, Relais, SPS				24 V DC R	elais, SPS
Versorgungsspannung	5, 12, 24 V DC (4,5 bis 28 V DC)			_	_	
Stromaufnahme		max. 1	I0 mA		_	_
Spannungsversorgung	max. 28	3 V DC	_	_	24 V DC (10	bis 28 V DC)
Arbeitsstrom	max. 4		max. 8	0 mA	5 bis 40 mA	
Innerer Spannungsabfall	max. 1,5 V ^{(m}	max. 1,5 V (max. 0,8 V bei 10 mA Arbeitsstrom) max. 0,8 V			max.	4 V
Kriechstrom	Max. 100 μA bei 24 V DC			Max. 0,8 m/	A bei 24 V DC	
Betriebsanzeige			EIN: ro	te LED		

Ölbeständiges Vinylkabel, Ø 2,7, 0,5 m

D-M9N(V), D-M9P(V) 0,15 mm² x 3- Draht (braun, schwarz, blau [rot, weiß, schwarz])
D-M98(V) 0,18 mm² x 2- Draht (braun, blau [rot, schwarz])

— 1000 m/s²

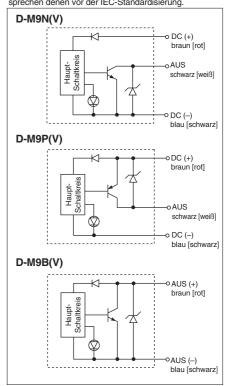
Isolationswiderstand 50 $\mathrm{M}\Omega$ oder mehr bei 500 V DC (zwischen Anschlusskabel und Gehäuse)

 Prüfspannung 1000 V AC über 1 min. (zwischen Anschlusskabel und Gehäuse)

Leuchtet, wenn EIN Betriebsanzeige

 Umgebungstemperatur -10 bis 60 °C Schaltzeit max 1 ms

 Stoßfestigkeit – IEC529 Standard IP67, wasserfest (JISC0920) Schutzklasse


• Zur Bestellung von 3 m Kabellänge fügen Sie "L" am Ende der Bestell-Nr. hinzu.

Signalgebergewicht

Modell	D-M9N	D-M9P	D-M9B	D-M9NV	D-M9PV	D-M9BV
Anschlusskabellänge 0,5 m	7	7	6	7	7	6
Anschlusskabellänge 3 m	37	37	31	37	37	31

Interner Schaltkreis Signalgeber

Die Farben der Anschlusskabel innerhalb der () entsprechen denen vor der IEC-Standardisierung.

Abmessungen Signalgeber

D-M9N, D-M9P, D-M9B D-M9NV, D-M9PV, D-M9BV Optimale Schaltposition Montageschraube M2,5 x 4 ℓ Schlitz-Montageschraube Optimale Schaltposition Betriebsanzeige Montageschraube M2,5 x 4 ℓ Schlitz-Montageschraube Betriebsanzeige

Elektronische Signalgeber mit 2-farbiger Anzeige D-M9 W/3-Draht, 2-Draht

Kolben-Ø (mm) D-M9NW(V), D-M9PW(V), D-M9BW(V) Verwendbare 20 100 Zylinderserie 10 16 25 32 40 50 63 80 MY1B (Grundausführung) MY1M (Gleitführung) MY1C (Rollenführung) MY1H (Präzisionsführung)

Verwendbare Signalgeber

D-M9 W, D-M9 WV (mit Betriebsanzeige)

Signalgebermodell	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Elektrischer Eingang	axial	vertikal	axial	vertikal	axial	vertikal
Anschlussart		3-D	raht		2-D	raht
Ausgangsart	NPN PNP			_	_	
Anwendung	IC- Steuerung, Relais, SPS				24 V DC F	lelais, SPS
Versorgungsspannung	5, 12, 24 V DC (4,5 bis 28 V DC)			_		
Stromaufnahme	max. 10 mA			_	_	
Spannungsversorgung	max. 28	3 V DC	_	_	24 V DC (10	bis 28 V DC)
Arbeitsstrom	max. 4			30 mA.	5 bis 4	40 mA
Innerer Spannungsabfall	max. ^{(M}	ax-0,8 V bei 10 mA Arbeitsstrom)	max.	0,8 V	max.	. 4 V
Kriechstrom	max. 100 μA bei 24 V DC			max. 0,8 mA	bei 24 V DC	
Betriebsanzeige	Schaltposition					

• Anschlusskabel — Ölbeständiges Vinylkabel, Ø 2,7, 0,5 m

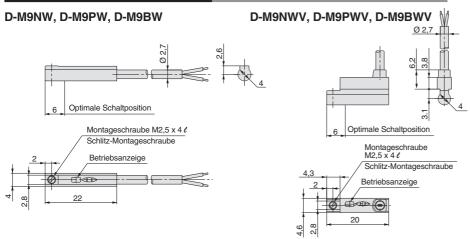
D-M9NW(V), D-M9PW(V) 0,15 mm² x 3- Draht (braun, schwarz, blau [rot, weiß, schwarz])

D-M98W(V)

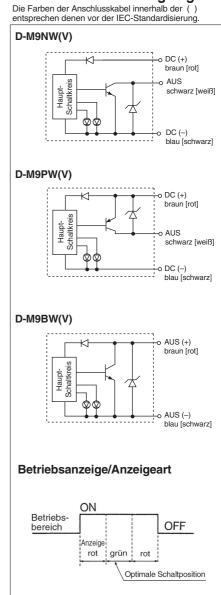
D-M98W(V) 0,18 mm² x 2- Draht (braun, blau [rot, schwarz]) 50 M Ω oder mehr bei 500 V DC (zwischen Anschlusskabel und Gehäuse)

• Isolationswiderstand — 50 M Ω ode • Prüfspannung — 1000 VAC

- 1000 VAC über 1 min. (zwischen Anschlusskabel und Gehäuse)
- -10 bis 60 °C • Schaltzeit — max. 1 ms • Stoßfestigkeit — 1000 m/s·


• Umgebungstemperatur ———— -10 bis 60 °C • Schaltzeit ——— n • Schutzklasse ——— IEC529 Standard IP67, wasserfest (JISC0920)

• Zur Bestellung von 3m Kabellänge fügen Sie "L" am Ende der Bestell-Nr. hinzu. Beispiel: D-M9NWL


Signalgebergewicht

Signalgebeigewicht Einheit: g						
Modell	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Anschlusskabellänge 0,5 m	7	7	7	7	7	7
Anschlusskabellänge 3 m	34	34	34	34	32	32

Abmessungen Signalgeber

Interner Schaltkreis Signalgeber

Wasserfest, 2-farbige Anzeige elektronischer Signalgeber **D-M9** (V) (Direktmontage)

Kolben-Ø [mm] D-M9NA(V), D-M9PA(V), D-M9BA(V) Verwendbare 25 16 20 50 100 10 32 40 63 80 Zylinderserie MY1B (Basistyp) MY1M (Gleitführung) MY1C (Laufrollenführung) MY1H (Präzisionsführung)

Technische Daten Signalgeber

D-M9 A, D-M9 AV (mit Betriebsanzeige) SPS: speicherprogrammierbare Steuerung

Signalgeber-Bestellnummer.	D-M9NA	D-M9NAV	D-M9PA	D-M9PAV	D-M9BA	D-M9BAV
Elektrische Eingangsrichtung	axial	vertikal	axial	vertikal	axial	vertikal
Verdrahtung		3-D	raht		2-D	raht
Ausgangsart	NI	PN	PI	NP	-	_
zulässige Last		IC-Steuerung, Relais, SPS			Relais 24	V DC, SPS
Versorgungsspannung	5	5, 12, 24 V DC (4,5 bis 28 V)			_	
Stromaufnahme		max. 10 mA			-	_
Lastspannung	max. 2	28 V DC	_	_	24 V DC (10	bis 28 V DC)
Betriebsstrom		max.	40 mA		2,5 bis	40 mA
Interner Spannungsabfall	max. 0,8	V bei 10 mA	(max. 2 V be	ei 40 mA)	max	. 4 V
Kriechstrom	max. 100 A bei 24 V DC			max. (0,8 mA	
Betriebsanzeige	Arbeitsposition Rote LED leuchtet Optimaler Betriebsbereich Grüne LED leuchtet.					

 Anschlusskabel — Ölbeständiges Vinylkabel: Ø 2,7 x 3,2 Ellipse D-M9BA(V) 0,15 mm² x 2-adrig D-M9NA(V), D-M9PA(V) 0,15 mm² x 3-adrig

Gewicht

Einheit:	[g]	

Interner Schaltkreis Signalgeber

ODC (+)

schwarz

DC (-)

ODC (+)

OAUS schwarz

DC (-)

AUS (+)

oAUS (-)

Betriebsanzeige / Anzeigeart

blau

D-M9NA(V)

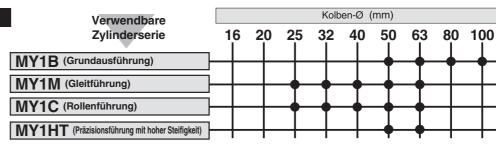
D-M9PA(V)

D-M9BA(V)

Betriebs-

Signalgeber-Bestellnummer.		D-M9NA(V)	D-M9PA(V)	D-M9BA(V)
	0,5	8	8	7
Anschlusskabellänge [m]	1	14	14	13
	3	41	41	38
	5	68	68	63

Abmessungen


500 (1000) (3000) (5000) OFF D-M9□A D-M9□AV Betriebsbereich D-M9NA, PA COM empfindlichste Position D-M9BA Montageschraube M2,5 x 4 ℓ D-M9BAV, NAV, PAV COM Gewindestift mit Schlitz (Kegelkuppe) Montageschraube M2,5 x 4 & Montageschraube M2,5 x 4 ℓ Gewindestift mit Schlitz (Kegelkuppe) Gewindestift mit Schlitz (Kegelkuppe 500 (1000) (3000) (5000) D-M9BA, NA, PA COM D-M9NAV, PAV COM D-M9BAV

Elektronische Signalgeber D-Y5, Y6, Y7P(V)/3Draht, 2-Draht (Direktmontage)

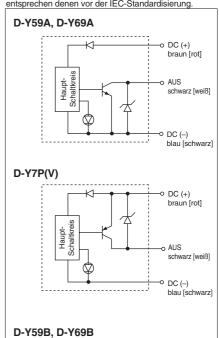
D-Y59^A_B, D-Y69^A_B, D-Y7P(V)

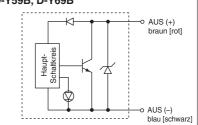
Verwendbare Signalgeber

D-Y5, D-Y6, D-Y7P, D-Y7PV (mit Betriebsanzeige)

2 10, 2 10, 2 111 (time Bettle							
Signalgebermodell	D-Y59A	D-Y69A	D-Y7P	D-Y7PV	D-Y59B	D-Y69B	
Elektrischer Eingang	axial	vertikal	axial	vertikal	axial	vertikal	
Anschlussart		3- E	raht		2-D	raht	
Ausgangsart	NPN		PI	NP	_		
Anwendung		IC-Steuerung	Relais, SPS 24 VDC Relais, SPS			elais, SPS	
Versorgungsspannung	5, 12, 24 V DC (4,5 bis 28 V DC)			_			
Stromaufnahme	max. 10 mA			_			
Spannungsversorgung	max. 28	3 V DC	_		24 VDC (10 bis 28 V DC)		
Arbeitsstrom	max. 4	l0 mA	max. 80 mA 5 bis 40 m/		40 mA		
Innerer Spannungsabfall	max. (max. 0,8 V bei 10	*	max. 0.8 V max. 4		. 4 V		
Kriechstrom		max. 100 μA bei 24 V DC Max. 0,8 mA			Max. 0,8 mA	bei 24 V DC	
Betriebsanzeige			EIN: ro	te LED	•		

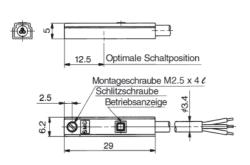
- Schaltzeit Max. 1 ms
- Anschlusskabel ———Ölbeständiges, flexibles Vinylkabel
- Ø 3,4, 0,15 mm², 3- Draht (braun, schwarz, blau [rot, weiß, schwarz]), 2-Draht (braun, blau [rot, schwarz]) 0,5 m²
- * Zur Bestellung von 3 m Kabellänge fügen Sie "L" am Ende der Bestell-Nr. hinzu. Beispiel) D-Y59AL
- Stoßfestigkeit 1000 m/S²
- Isolationswiderstand $50~\text{M}\Omega$ oder mehr bei 500~V DC (zwischen Anschlusskabel und Gehäuse)
- Prüfspannung 1000 V AC über 1min. (zwischen Anschlusskabel und Gehäuse)
- Umgebungstemperatur -10 bis 60 °C
- Schutzklasse IEC529 Standard IP67, wasserfest (JISC0920)

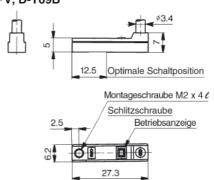

Signalgebergewicht


Ein	heit:	g

Modell	Anschlusskabellänge 0,5 m	Anschlusskabellänge 3 m
D-Y59A, Y69A, Y7P, Y7PV	10	53
D-Y59B, Y69B	9	50

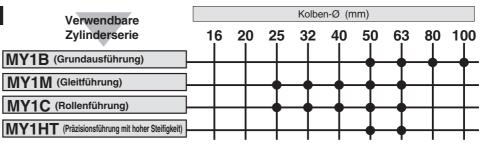
Interner Schaltkreis Signalgeber


Die Farben der Anschlusskabel innerhalb der () entsprechen denen vor der IEC-Standardisierung.



Abmessungen Signalgeber

D-Y59A, D-Y7P, D-Y59B


D-Y69A, D-Y7PV, D-Y69B

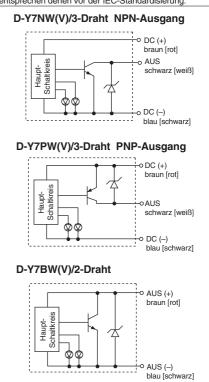
Elektronische Signalgeber D-Y7 W/3-Draht, 2-Draht (Direktmontage)

D-Y7NW(V), D-Y7PW(V), D-Y7BW(V)

Verwendbare Signalgeber

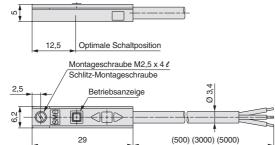
D-Y7 W, D-Y7 WV (mit Betriebsanzeige)

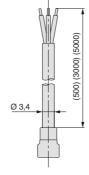
	•						
Signalgebermodell	D-Y7NW	D-Y7NWV	D-Y7PW	D-Y7PWV	D-Y7BW	D-Y7BWV	
Elektrischer Eingang	axial	vertikal	axial	vertikal	axial	vertikal	
Anschlussart		3-D	raht		2-Draht		
Ausgangsart	NF	PN	PI	NP.	_	_	
Anwendung		IC-Steuerung	, Relais, SPS 24 V DC Relais, SPS			elais, SPS	
Versorgungsspannung	5,	5,12, 24 V DC (4,5 bis 28 V DC) -				_	
Stromaufnahme	Max. 10mA				_		
Spannungsversorgung	max. 28	3 V DC	_	_	24 V DC (10 bis 28 V DC)		
Arbeitsstrom	max. 4	0 mA	max. 80 mA 5 bis 40 m		10 mA		
Innerer Spannungsabfall	max. (max. 0,8 V bei 10		max. 0,8 V max. 4		x. 4		
Kriechstrom	max. 100 μA bei 24 V DC			max. 0,8 mA bei 24 V DC			
Betriebsanzeige			sposition				

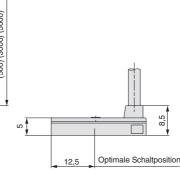

- Schaltzeit
- max. 1 ms Ölbeständiges, flexibles Vinylkabel Anschlusskabel Ø 3.4, 0,15 mm², 3-Draht (braun, schwarz,blau [rot, weiß, schwarz]), 2-Draht braun, blau [rot, schwarz]), 0,5 m^s
- * Zur Bestellung von 3 m Kabellänge fügen Sie "L" am Ende der Bestell-Nr. hinzu. Beispiel: D-Y7NWL
- Stoßfestigkeit -1000 m/s
- Isolationswiderstand $50~\text{M}\Omega$ oder mehr bei 500~V DC (zwischen Anschlusskabel und Gehäuse)
- · Prüfspannung -1000 V AC über 1 min (zwischen Anschlusskabel und Gehäuse)
- -10 bis 60 °C Umgebungstemperatur
- Schutzklasse -IEC529 Standard IP67 wasserfest (JISC0920)

Signalgebergewicht

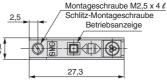
Signalgebergewicht Einheit:						
Modell	Anschlusskabellänge 0,5 m	Anschlusskabellänge 3 m				
D-Y7NW, Y7PW, Y7BW	10	53				
D-Y7NWV Y7PWV Y7RWV	Q	50				


Interner Schaltkreis Signalgeber

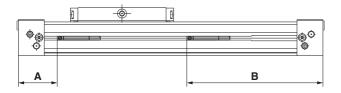

Die Farben der Anschlusskabel innerhalb der () entsprechen denen vor der IEC-Standardisierung



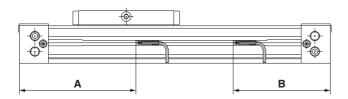
Abmessungen Signalgeber


D-Y7□W

D-Y7 WV



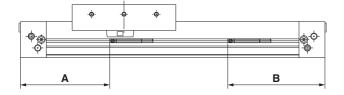
Serie MY1


Signalgebermontage 1

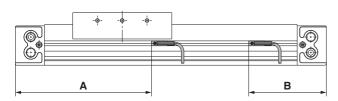
korrekte Signalgeberposition (Erfassung des Hubendes)

MY1B (Basistyp) Ø 10, Ø 16, Ø 20

Ø 50 bis Ø 100


korrekte Signalgeberposition

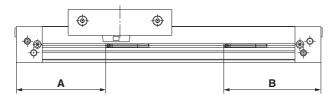
[mn


Signalgeber- modell	D-1013	□V □W □WV	D-A	9□ 9□V	D-Y59□/Y7P D-Y69□/Y7PV D-Y7□W D-Y7□WV D-Y7BA D-Z7□/Z80		
Kolben-Ø	Α	В	Α	В	Α	В	
10	24	86	20	90	_	_	
16	31,5	128,5	27,5	132,5	_	_	
20	39	161	35	165 —		_	
50	_	_	_	_	272,5	127,5	
63	322,5	137,5	_	_	317,5	142,5	
80	489,5	200,5	_	_	484,5	205,5	
100	574,5	225,5	_	_	569,5	230,5	

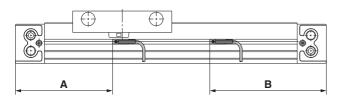
Anm. 1) Ausführung D-M9□□□kann nicht auf Ø 50 montiert werden. Anm. 2) Überprüfen Sie vor der endgültigen Einstellung des Signalgebers zunächst die Betriebsbedingungen.

MY1M (Ausführung mit Gleitführung) Ø 16, Ø 20

Ø 25 bis Ø 63


korrekte Signalgeberposition

[mm]


Signalgeber- modell	D-M9 D-M9 D-M9 D-M9 D-M9	□V □W □WV	D-A9□ D-A9□V		D-Y59□/Y7P D-Y69□Y7PV D-Y7□W D-Y7□WV D-Z7□/Z80	
Kolben-Ø	Α	В	Α	В	Α	В
16	74	86	70	90	_	_
20	94	106	90	110	_	_
25	143,5	75,5	_	_	139,5	80,5
32	189,5	90,5	_	_	184,5	95,5
40	234,5	105,5	_	_	229,5	110,5
50	283,5	116,5	_	_	278,5	121,5
63	328,5	131,5	_	_	323,5	136,5

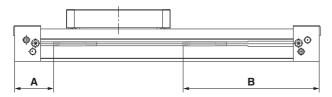
Anm.) Vor der endgültigen Einstellung des Signalgebers zunächst die Betriebsbedingungen prüfen.

MY1C (mit Laufrollenführung) Ø 16, Ø 20

Ø 25 bis Ø 63

korrekte Signalgeberposition

Signalgeber-D-M9□ D-Y59□/Y7P modell D-M9□V D-Y69 /Y7PV D-M9□W **D-A9**□ $\text{D-Y7}\square W$ D-M9□WV D-A9□V D-Y7 WV D-M9□A D-Z7□/Z80 D-M9□AV В В В Kolben-Ø Α Α 16 86 70 90 20 90 94 106 110 25 102 118 97 123 32 132 148 127 153 40 162,5 175,5 157,5 182,5 50 283,5 116,5 278,5 121,5 63 328,5



Serie MY1

Signalgebermontage 2

korrekte Signalgeberposition (Erfassung des Hubendes)

MY1H (mit Linearführung) Ø 10, Ø 16, Ø 20

korrekte Signalgeberposition							
Signalgeber mode	D-IVI9						

D-M9□W

D-M9□A D-M9□AV

Α

24

31,5

39

D-M9□WV

B

86

128,5

161

Kolben-Ø

10

16

20

		[mm]
	D-Y59[D-Y69[D-Y7[]\ D-Y7[]\ D-Z7[]/	J/Y7PV W WV
	Α	В
	_	_
5	_	

Anm.) Überprüfen Sie vor der endgültigen Einstellung des Signalgebers zunächst die Betriebsbedingungen

Α

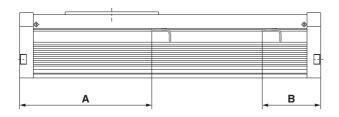
20

27,5

35

D-A9□

D-A9□V


В

90

132

165

MY1HT (Ausführung mit hoher Steifigkeit / Linearführung) Ø 50, Ø 63

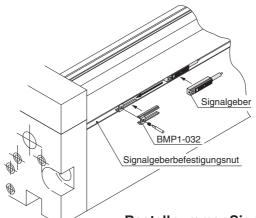
Korrekte Signalgeber-

Einbaulage Signalgeber-D-Y59□/Y7P D-Y69 /Y7PV D-Y7□W D-Y7□WV D-Y7BA D-Z7□/Z80 В Kolben-Ø 50 290,5 123,5 335,5 138,5

Anm.) Vor der endgültigen Einstellung des Signalgebers zunächst die Betriebsbedingungen in der vorliegenden Konfiguration prüfen.

Montage und Bewegen des Signalgebers (für MY1HT)

Für die Montage eines Signalgebers nehmen Sie zunächst den Signalgeberhalter in die Hand, und drücken ihn in eine Signalgeberbefestigungsnut. Anschließend die korrekte Einbaulage prüfen und bei Bedarf korrigieren.


Setzen Sie anschließend den Signalgeber in die Nut ein, und schieben Sie ihn in den Halter (siehe Abbildung rechts).

Richten Sie ihn in der korrekten Einbauposition aus und ziehen Sie mit Hilfe eines Feinschraubendrehers die beiliegende Befestigungsschraube an.

Korrekt

Nicht korrekt

Anm.) Verwenden Sie zum Anziehen der Signalgeber-Befestigungsschraube einen Feinschraubendreher mit einem Griffdurchmesser von ca. 5 bis 6 mm. Mit einem Anzugsdrehmoment von 0,05 bis 0,1 N·m festziehen. Als generelle Regel gilt, dass der Feinschraubendreher ab dem Punkt, an dem ein Widerstand zu spüren ist, noch 90.° weitergedreht werden muss.

Bestellnummer Signalgeberhalter

Zylinderserie	verwendbarer Kolben-Ø [mm]			
	50	63		
MY1HT	BMP1-032			

Betriebsbereich

Anm.) Es handelt sich bei diesen Angaben um Richtwerte einschließlich Hysterese, für die keine Garantie übernommen wird. (Abweichung von ca. ± 30 %). Je nach Umgebungsbedingungen können die Werte beträchtlich variieren.

MY1B (Basisty	MY1B (Basistyp) [mm]						
Oissa ala ala amas adall	Kolben-Ø						
Signalgebermodell	10	16	20	50	63	80	100
D-A9□/A9□V	6	6,5	8,5	_	_		_
D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	3,5	4	5,5	_	12	12	11,5
D-Z7□/Z80	_	_	_	11,5	11,5	11,5	11,5
D-Y59□/Y69□ D-Y7P/Y7PV D-Y7□W/Y7□WV	_	_	_	3,5	3,5	3,5	3,5

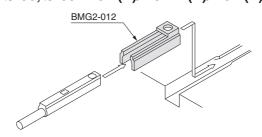
D-M9□□□kann nicht auf Ø 50 montiert werden.

MY1M (Ausführung mit Gleitführung) [mm]								
Oissa also bassas adall	Kolben-Ø							
Signalgebermodell	16	20	25	32	40	50	63	
D-A9□/A9□V	11	7,5	_	_	_	_	_	
D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	7,5	7,5	8,5	8,5	9,5	7	6	
D-Z7□/Z80	_	_	12	12	12	11,5	11,5	
D-Y59□/Y69□ D-Y7P/Y7PV D-Y7□W/Y7□WV	_	_	5	5	5	5,5	5,5	

MY1C (mit Laufrollenführung) [mm]									
Oi-man land harmon and all		Kolben-Ø							
Signalgebermodell	16	20	25	32	40	50	63		
D-A9□/A9□V	11	7,5	_	_	_	_	_		
D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	7,5	7,5	7	8	8,5	7	6		
D-Z7□/Z80	_	_	12	12	12	11,5	11,5		
D-Y59□/Y69□ D-Y7P/Y7PV D-Y7□W/Y7□WV	_		5	5	5	5,5	5,5		

MY1H (mit Linearführung) [mm]						
Oi-malanahamma adall	Kolben-Ø					
Signalgebermodell	10	16	20			
D-A9□/A9□V	11	6,5	8,5			
D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	3	4,5	5			
D-Z7□/Z80	_	_	_			
D-Y59□/Y69□ D-Y7P/Y7PV D-Y7□W/Y7□WV	_	_				

MY1HT (Ausführung mit hoher Steifigkeit / Linearführung)_[mm]


	•	,, [,,,,,,,		
0:	Kolben-Ø			
Signalgebermodell	50	63		
D-Z7□/Z80	11	11		
D-Y59□/Y69□ D-Y7P/Y7PV D-Y7□W/Y7□WV D-Y7BA	5	5		

Signalgeber-Montagewinkel: Bestellnummer.

Signalgebermodell	Kolben-Ø [mm]				
Signalgebermodeli	Ø 10, Ø 16, Ø 20	Ø 50, Ø 63			
D-A9□/A9□V D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	_	BMG2-012			

Anm. 1) MY1B/MY1C/MY1M, D-A9□□kann nicht auf Ø 50 bis Ø 100 der Serie MY1 montiert werden. D-M9□□□ kann nicht auf Ø 50 der Serie MY1B montiert werden.

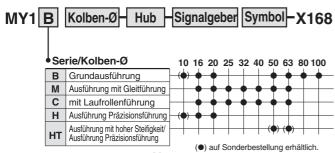
Ø 50, Ø 63: M9□(V)/M9□W(V)/M9□(V)

Neben den im "Bestellschlüssel" angegebenen Modellen sind noch folgende Signalgeber verwendbar. Siehe Seiten 107 bis 117 für nähere technischen Angaben.

	Signalgeberausführung	Bestellnummer.	elektrischer Anschluss (Anschlussrichtung)	Merkmale	verwendbarer Kolben-Ø
	elektronischer Signalgeber	D-Y69A, Y69B, Y7PV	eingegossenes Kabel (vertikal)	_	
		D-Y7NWV, Y7PWV, Y7BWV	eingegosseries Kabei (vertikai)	Diagnoseanzeige (2-farbige Anzeige)	Ø 25 bis Ø 100
		D-Y59A, Y59B, Y7P	eingegossenes Kabel (gerade)	_	Ø 25 DIS Ø 100
	D-Y7NW, Y7PW, Y7BW	elligegosseries Kabel (gerade)	Diagnoseanzeige (2-farbige Anzeige)		

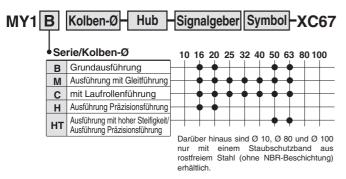
- * Elektronische Signalgeber sind auch mit vorverdrahtetem Stecker erhältlich. Siehe Webseite auf www.smc.eu für nähere Angaben.
- * Es sind auch elektronische Signalgeber für die drucklos geschlossene Ausführung (NC = b-Kontakt) erhältlich (D-F9G/F9H/Y7G/Y7H).

Serie MY1 Bestelloptionen

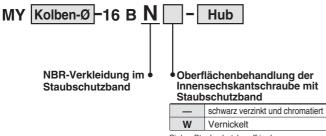

SMC informiert Sie über Details zu Abmessungen, technischen Daten und Lieferzeiten.

Einsatzmöglichkeiten der Bestelloptionen

		Gewinde- einsatz X168	NBR-Staub- schutzband XC67	Stoßdämpfer Sanft dämpfende Ausführung XB22	Bohrungen für Passstifte XC56
MY1B	Grundausführung	•	•	•	
MY1M	Ausführung mit Gleitführung	•	•	•	
MY1C	mit Laufrollenführung	•	•	•	•
MY1H	Ausführung Präzisionsführung	•	•	•	•
MY1HT	Ausführung mit hoher Steifigkeit/Präzisionsführung		•		


Die Montagegewinde des Schlittens sind nunmehr als Einschraubgewinde ausgelegt. Die Gewindegröße entspricht der Standardausführung.

Beispiel: MY1B40G-300L-Z73-X168


NBR-Beschichtung im Staubschutzband -XC67

Die standardmäßige Vinylchlorid-Auskleidung wird durch die NBR-Beschichtung ersetzt. Die Ölbeständigkeit und Abziehfestigkeit wird verbessert. Anm.) Wenden Sie sich bzgl. spezifischer Ölbeständigkeit an SMC.

Beispiel: MY1B40G-300L-Z73-XC67

Nur zur Bestellung des Staubschutzbands (NBR-Blende)

Beispiel: MY25-16BNW-300

Siehe "Staubschutzband" in den Konstruktionszeichnungen jeder Serie für Details

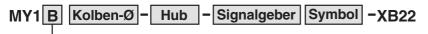
Serie MY1 Bestelloptionen

SMC informiert Sie über Details zu Abmessungen, technischen Daten und Lieferzeiten.

3 Stoßdämpfer sanft dämpfende Ausführung Serie RJ

Symbol -XB22

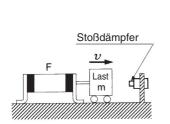
Diagramm max. Aufprallgewicht (Diagramm Stoßdämpferleistung) * Die Werte im Diagramm für max. Aufprallmasse sind gültig für Raumtemperatur (20 bis 25 °C).

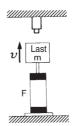

Stellen Sie sicher, dass sich die Aufprallmasse und die Aufprallgeschwindigkeit innerhalb des unten angegebenen Diagramms für Energieaufnahme befindet. Siehe jeweilige Berechnung des Zylinders für Lastfaktoren und Führungslastfaktoren.

Serie/Kolben-Ø

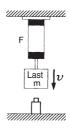
B Grundausführung

M Ausführung mit GleitführungC mit Laufrollenführung

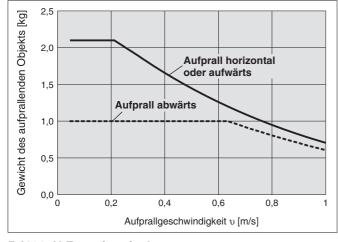

Ausführung Präzisionsführung

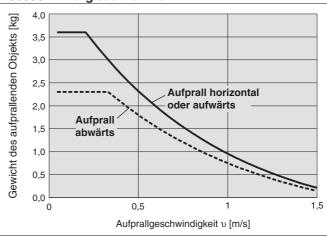


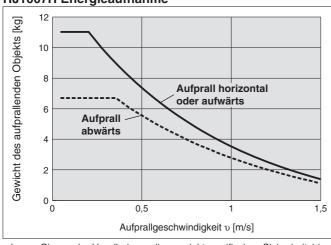
Beispiel: MY1B40G-300L-Z73-XB22

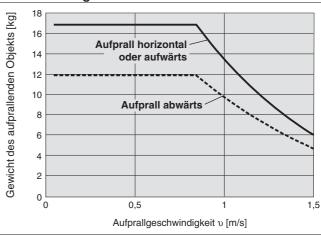

■ Kollisionsart

Horizontaler Aufprall Aufprall Druckluftzylinder (horizontal/aufwärts)




Aufprall Druckluftzylinder (abwärts)


RJ0805 Energieaufnahme



RJ1007H Energieaufnahme

RJ1412H Energieaufnahme

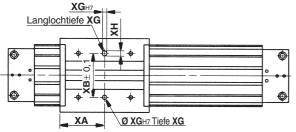
^{*} Lesen Sie vor der Handhabung die "produktspezifischen Sicherheitshinweise" im Katalog der Serie RJ durch.

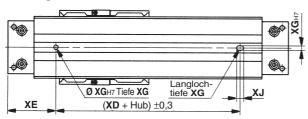
Serie MY1 Bestelloptionen

SMC informiert Sie über Details zu Abmessungen, technischen Daten und Lieferzeiten.

4 mit Bohrungen für Bolzen

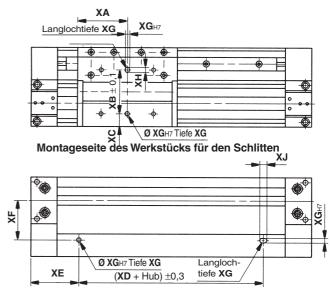
Symbol


Zylinder mit Bohrungen für Positionierpassstifte


Beispiel: MY1H40G-300L-Z73-XC56

Abmessungen

Serie MY1C

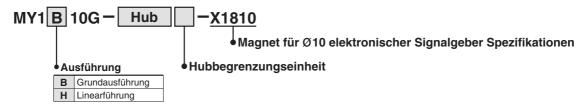

Montageseite des Werkstücks für den Schlitten

Montageseite des Zylinderrohrs

							[mm]
Kolben-Ø	XA	ХВ	XD	XE	ХG	ХН	XJ
16	40	40	80	40	4	5	9
20	50	40	100	50	4	5	9
25	51	50	110	55	5	6	10
32	66	60	140	70	6	7	11
40	81	80	180	80	6	7	11
50	100	90	230	85	8	9	13
63	115	110	280	90	10	10	15

Serie MY1H

Montageseite des Zylinderrohrs


									[HIIIII]
Kolben-Ø	XA	ХВ	хс	XD	XE	XF	XG	хн	XJ
10	25	33	3,5	70	20	21,5	3	4	5
16	40	40	7,5	80	40	30	4	5	7
20	50	40	14,5	100	50	39	4	5	7

5 Magnet für ø10 elektronischer Signalgeber Spezifikationen

Symbol -X1810

Durch die Verwendung des Magneten für elektronische Signalgeber kann die Stabiltät des Schaltbetriebs gewährleistet werden.

* Wenn Sie den Zylinder in Kombination mit einem elektronischen Signalgeber verwenden oder verwenden wollen, aber aktuell nur den Zylinder bestellen, fügen Sie bitte die Endung "-X1810" an das Ende der Produkt-Nr. an.

^{*} Wenn in der Produktnummer ein Signalgeber enthalten ist, muss die Endung "-X1810" nicht an das Ende der Produktnummer angehängt werden. Beispiel) MY1B10G-300H-M9BL

Serie MY1 Produktspezifische Sicherheitshinweise

Vor Inbetriebnahme durchlesen.

Montage

Achtung

- Achten Sie darauf, dass keine großen Stoßkräfte oder übermäßigen Momente auf den Schlitten wirken
 - Der Schlitten wird von Präzisions-führungen (MY1C, MY1H) oder Kunststofführungen gehalten; achten Sie deshalb bei der Montage von Werkstücken darauf, dass keine starken Stoßkräfte oder übermäßigen Momente auf den Schlitten wirken.
- 2. Richten Sie bei Anbau einer Last mit externem Führungsmechanismus diese sorgfältig aus.
 - Kolbenstangenlose Bandzylinder können innerhalb des für jede Führungsart zulässigen Bereichs mit einer direkt angebauten Last eingesetzt werden; jedoch ist bei Anbau einer Last mit externem Führungsmechanismus eine sorgfältige Ausrichtung notwendig.
 - Da die Abweichung von der Mittelachse mit zunehmender Hublänge größer wird, sollte eine Anbaumethode gewählt werden, die diese Schwankungen komensieren kann (Ausgleichselement).
 - Verwenden Sie die speziellen Ausgleichselemente (S. 2-504 bis 2-506), die für die Serie MY1B erhältlich sind.
- Setzen Sie den Zylinder nicht in Umgebungen ein, in denen er mit Kühlmitteln, Schneidöl, Wasser, Klebstoffen, Staub o.Ä. in Kontakt kommt. Vermeiden Sie auch den Betrieb mit Druckluft, die Kondensat oder Fremdstoffe, usw. enthält.
 - Fremdstoffe oder Flüssigkeiten im oder außen am Zylinder können das Schmierfett auswaschen und somit zur Abnutzung und Beschädigung des Staubschutzbands und der Dichtungen führen, wodurch die Gefahr von Fehlfunktionen entsteht.

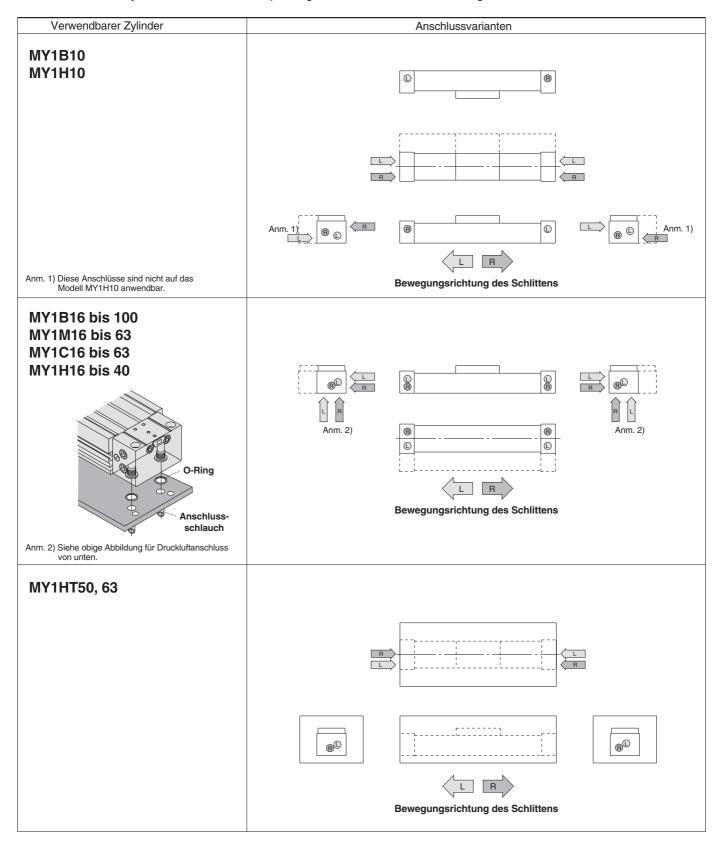
Wird der Zylinder in staubigen Umgebungen oder in Bereichen, in denen er Wasser und Öl ausgesetzt ist, betrieben, muss eine Schutzabdeckung angebracht werden, um einen direkten Kontakt mit dem Zylinder zu unterbinden oder der Zylinder muss so montiert werden, dass das Staubschutzband nach unten zeigt; verwenden Sie ausserdem gereinigte Druckluft für den Zylinderbetrieb.

Achtung

- 1. Verstellen Sie nicht unbedacht die Einstellung der Führungseinstelleinheit.
 - Die Führung ist werkseitig voreingestellt und unter normalen Betriebsbedingungen ist keine Neueinstellung erforderlich. Verstellen Sie deshalb nicht unbedacht die Einstellung der Führungseinstelleinheit. Bei anderen Serien als der Serie MY1H dagegen ist eine Neueinstellung und der Austausch der Führungslager, usw. möglich. Siehe dazu den Abschnitt zum Austausch der Führungslager im Handbuch.

Achtung

- 1. Externe Druckluftverluste
 - Beachten Sie, dass unter Betriebsbedingungen, bei denen aufgrund externer Kräfte oder von Trägheitsmomenten Unterdruck im Zylinder erzeugt wird, Druckluftverluste durch die Trennung des Dichtungsbandes auftreten können.


Serie MY1 Produktspezifische Sicherheitshinweise

Vor Inbetriebnahme durchlesen.

△ Achtung

Anschlussvarianten

• Die Anschlüsse am Zylinderdeckel können zur Anpassung an verschiedene Situationen frei gewählt werden.

Diese Sicherheitshinweise sollen vor gefährlichen Situationen und/oder Sachschäden schützen. In den Hinweisen wird die Schwere der potentiellen Gefahren durch die Gefahrenworte "Achtung", "Warnung" oder "Gefahr" bezeichnet. Diese wichtigen Sicherheitshinweise müssen zusammen mit internationalen Standards (ISO/IEC)*1) und anderen Sicherheitsvorschriften beachtet werden.

Achtung verweist auf eine Gefahr mit geringem Risiko, die *1) ISO 4414: Achtung: leichte bis mittelschwere Verletzungen zur Folge haben kann, wenn sie nicht verhindert wird.

Warnung verweist auf eine Gefahr mit mittlerem Risiko, Warnung: die schwere Verletzungen oder den Tod zur Folge haben kann, wenn sie nicht verhindert wird.

Gefahr verweist auf eine Gefahr mit hohem Risiko, die schwere Verletzungen oder den Tod zur Folge hat, wenn sie nicht verhindert wird.

Fluidtechnik - Ausführungsrichtlinien Pneumatik ISO 4413: Fluidtechnik – Ausführungsrichtlinien Hydraulik IEC 60204-1: Sicherheit von Maschinen - Elektrische Ausrüstung von Maschinen (Teil 1: Allgemeine Anforderungen) ISO 10218-1: Industrieroboter - Sicherheitsanforderungen usw.

1. Verantwortlich für die Kompatibilität des Produktes ist die Person, die das System erstellt oder dessen Spezifikation festlegt.

Da das hier aufgeführte Produkt unter verschiedenen Betriebsbedingungen eingesetzt wird, darf die Entscheidung über dessen Eignung für einen bestimmten Anwendungsfall erst nach genauer Analyse und/oder Tests erfolgen, mit denen die Erfüllung der spezifischen Anforderungen überprüft wird. Die Erfüllung der zu erwartenden Leistung sowie die Gewährleistung der Sicherheit liegen in der Verantwortung der Person, die die Systemkompatibilität festgestellt hat. Diese Person muss anhand der neuesten Kataloginformation ständig die Eignung aller angegebenen Teile überprüfen und dabei im Zuge der Systemkonfiguration alle Möglichkeiten eines Geräteausfalls ausreichend berücksichtigen.

2. Maschinen und Anlagen dürfen nur von entsprechend geschultem Personal betrieben werden.

Das hier angegebene Produkt kann bei unsachgemäßer Handhabung gefährlich sein. Montage-, Inbetriebnahme- und Reparaturarbeiten an Maschinen und Anlagen, einschließlich der Produkte von SMC, dürfen nur von entsprechend geschultem und erfahrenem Personal

- 3. Wartungsarbeiten an Maschinen und Anlagen oder der Ausbau einzelner Komponenten dürfen erst dann vorgenommen werden, wenn die Sicherheit gewährleistet ist.
 - 1. Inspektions- und Wartungsarbeiten an Maschinen und Anlagen dürfen erst dann ausgeführt werden, wenn alle Maßnahmen überprüft wurden, die ein Herunterfallen oder unvorhergesehene Bewegungen des angetriebenen Objekts verhindern.
 - 2. Soll das Produkt entfernt werden, überprüfen Sie zunächst die Einhaltung der oben genannten Sicherheitshinweise. Unterbrechen Sie dann die Druckluftversorgung aller betreffenden Komponenten. Lesen Sie die produktspezifischen Sicherheitshinweise aller relevanten Produkte sorafältig.
 - 3. Vor dem erneuten Start der Maschine bzw. Anlage sind Maßnahmen zu treffen, um unvorhergesehene Bewegungen des Produktes oder Fehlfunktionen zu verhindern
- 4. Bitte wenden Sie sich an SMC und treffen Sie geeignete Sicherheitsvorkehrungen, wenn das Produkt unter einer der folgenden Bedingungen eingesetzt werden soll:
 - 1. Einsatz- bzw. Umgebungsbedingungen, die von den angegebenen technischen Daten abweichen, oder Nutzung des Produktes im Freien oder unter direkter Sonneneinstrahlung.
 - 2. Einbau innerhalb von Maschinen und Anlagen, die in Verbindung mit Kernenergie, Eisenbahnen, Luft- und Raumfahrttechnik, Schiffen, Kraftfahrzeugen, militärischen Einrichtungen, Verbrennungsanlagen, medizinischen Geräten oder Freizeitgeräten eingesetzt werden oder mit Lebensmitteln und Getränken, Notausschaltkreisen, Kupplungsund Bremsschaltkreisen in Stanz- und Pressanwendungen, Sicherheitsausrüstungen oder anderen Anwendungen in Kontakt kommen, die nicht für die in diesem Katalog aufgeführten technischen Daten geeignet sind.

∕ Warnuna

- 3. Anwendungen, bei denen die Möglichkeit von Schäden an Personen, Sachwerten oder Tieren besteht und die eine besondere Sicherheitsanalyse verlangen
- 4. Verwendung in Verriegelungssystemen, die ein doppeltes Verriegelungssystem mit mechanischer Schutzfunktion zum Schutz vor Ausfällen und eine regelmäßige Funktionsprüfung erfordern.

Achtung

1. Das Produkt wurde für die Verwendung in der Fertigungsindustrie konzipiert.

Das hier beschriebene Produkt wurde für die friedliche Nutzung in Fertigungsunternehmen entwickelt.

Wenn Sie das Produkt in anderen Wirtschaftszweigen verwenden möchten, müssen Sie SMC vorher informieren und bei Bedarf entsprechende technische Daten zur Verfügung stellen. Wenden Sie sich bei Fragen bitte an die nächstgelegene Vertriebsniederlassung.

Einhaltung von Vorschriften

Das Produkt unterliegt den folgenden Bestimmungen zur "Einhaltung von rifte S c h Lesen Sie diese Punkte durch und erklären Sie Ihr Einverständnis, bevor Sie das Produkt verwenden.

Einhaltung von Vorschriften

- 1. Die Verwendung von SMC-Produkten in Fertigungsmaschinen von Herstellern von Massenvernichtungswaffen oder sonstigen Waffen ist strengstens untersagt.
- 2. Der Export von SMC-Produkten oder -Technologie von einem Land in ein anderes hat nach den an der Transaktion beteiligten Ländern geltenden Sicherheitsvorschriften und -normen zu erfolgen. Vor dem internationalen Versand eines jeglichen SMC-Produktes ist sicherzustellen, dass alle nationalen Vorschriften in Bezug auf den Export bekannt sind und befolgt werden.

⚠Achtung

SMC-Produkte sind nicht für den Einsatz als Instrumente im gesetzlichen Messwesen bestimmt.

Die von SMC gefertigten bzw. vertriebenen Messinstrumente wurden keinen Prüfverfahren zur Typengenehmigung unterzogen, die von den Messvorschriften der einzelnen Länder vorgegeben werden

Daher dürfen SMC-Produkte nicht für Arbeiten bzw. Zertifizierungen eingesetzt werden, die im Rahmen der Messvorschriften der einzelnen Länder vorgegeben werden.

SMC Corporation (Europe)

Austria 2 +43 (0)2262622800 www.smc.at office@smc.at Belgium *****+32 (0)33551464 www.smcpneumatics.be info@smcpneumatics.be **2** +359 (0)2807670 office@smc.bg Bulgaria www.smc.bg Croatia ***** +385 (0)13707288 office@smc.hr www.smc.hr **2**+420 541424611 Czech Republic www.smc.cz office@smc.cz Denmark **2** +45 70252900 smc@smcdk.com www.smcdk.com Estonia *****+372 6510370 www.smcpneumatics.ee smc@smcpneumatics.ee Finland **2**+358 207513513 smcfi@smc fi www smc fi France *****+33 (0)164761000 www.smc-france.fr info@smc-france.fr Germany **2** +49 (0)61034020 www.smc.de info@smc.de Greece ***** +30 210 2717265 www.smchellas.gr sales@smchellas.gr ***** +36 23513000 Hungary www.smc.hu office@smc.hu Ireland **2** +353 (0)14039000 www.smcpneumatics.ie sales@smcpneumatics.ie mailbox@smcitalia.it *****+39 0292711 Italy www.smcitalia.it Latvia ★+371 67817700 info@smclv.lv www.smclv.lv

Lithuania Netherlands Norway Poland

Portugal Romania Russia Slovakia Slovenia Spain Sweden Switzerland Turkey UK

3+370 5 2308118 *****+31 (0)205318888 **2** +47 67129020

*****+48 222119600 *****+351 226166570 **2**+40 213205111 *****+7 8127185445 ***** +421 (0)413213212 ***** +386 (0)73885412 *****+34 902184100 *****+46 (0)86031200

***** +41 (0)523963131

212 489 0 440 **212** 489 0 440

www smclt It www.smcpneumatics.nl www.smc-norge.no www.smc.pl www.smc.eu

www.smcromania.ro www.smc-pneumatik.ru www.smc.sk www.smc.si www.smc.eu www.smc.nu www.smc.ch www.smcpnomatik.com.tr ***** +44 (0)845 121 5122 www.smcpneumatics.co.uk sales@smcpneumatics.co.uk

info@smclt It info@smcpneumatics.nl post@smc-norge.no office@smc.pl postpt@smc.smces.es

smcromania@smcromania.ro info@smc-pneumatik.ru office@smc.sk office@smc.si post@smc.smces.es post@smc.nu info@smc.ch

info@smcpnomatik.com.tr

SMC CORPORATION Akihabara UDX 15F, 4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021, JAPAN Phone: 03-5207-8249 FAX: 03-5298-5362